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Abstract:  

In this paper we consider three methods of approximation for the nonlinear water wave equation. In 

particular we are interested of KdV equation as a stationary water wave. The first is the method of 

approximation with a polynomial, the second method is the finite–volume method and the third method is 

Laplace decomposition method (LDM). A comparison between the methods is mentioned in this article. 

We treat the considered methods comparing the obtained solutions with the exact ones. We give in 

particular the numerical results compared with the analytical results. We show that the used methods are 

effective and convenient for solving the water wave equations. We can propose and sure that the method of 

approximation with a polynomial gives accurate results.  

 

Keywords: KdV-Bezuci equation, approximation, finite–volume method, the method of lines, LDM 

method. 

 

1  Introduction 

We consider the initial-boundary value problem associated with the nonlinear dispersive and dissipative 

wave which was formulated by Korteweg, de Vries and Burgers in the form (see [2]) 

 
𝜕𝑈

𝜕𝑥
+ 𝜇𝑢

𝜕𝑈

𝜕𝑥
− 𝜃

𝜕2𝑈

𝜕𝑥2 + 𝛿
𝜕3𝑈

𝜕𝑥3 = 0                                  (1.1)   

where 𝜇, 𝜃, 𝛿  are constant coefficients. 

 

In [1] we see  the change form of long waves in a rectangular zone and on a new type of stationary waves.  

In particular, we deal with the nonlinear wave equation, named Korteweg de Vries-Bezuci form as follow: 

 
𝜕𝑈

𝜕𝑥
− 𝛿

𝜕𝑢

𝜕𝑥
+ 𝜇𝑢

𝜕𝑢

𝜕𝑥
− 𝜃

𝜕2𝑢

𝜕𝑥2 = 0                                  (1.2)   

 

where, the coefficients 𝜇 and 𝜃 in Eq. (1.3) represent the damping and the dispersion coefficients, 

respectively and  𝛿 =
𝑝𝑧(𝑥,𝑦)

𝑆
  is the wave breaking coefficient. 

Numerical methods, numerical results and comparisons are considered in this article. It is well known that 

many physical phenomena can be described by the Korteweg-de Vries–Bezuci equation. Eq. (1.2) can serve 

as a nonlinear wave model of a fluid in an elastic tube [1] and turbulence [3,4].  

Johnson [5], Demiray [6] and Antar and Demiray [7] derived KdVB equation as the governing evolution 

equation for waves propagating in fluid-filled elastic or visco-elastic tubes in which the effects of dispersion, 

dissipation and nonlinearity are present. 

Numerical methods for solutions of the KdV equation are known since long time. Recall here [8, 9, 10]. 

Many problems, however, involve not only dispersion but also dissipation, and these are not governed by the 

KdV equation. Other cases regarded the governing evolution equation can be shown to be the so-called 

Korteweg-de Vries–Bezuci equation. 
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2 Fundamentals of Modified Laplace Decomposition Method 

In this section, a brief outline of  LDM is explained [10]. For this, we consider the general nonlinear partial 

differential equation of first order (without loss of generality) in the following form: 

 

                                           𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁(𝑢(𝑥, 𝑡)) = ℎ(𝑥, 𝑡)                       (2.1)               

 

 with the following initial condition:                         𝑢(𝑥, 0) = 𝑓(𝑥)                                                          ( 

2.2)                                          

 

where 𝐿 is the first-order differential operator, 𝐿=𝜕/𝜕𝑡, 𝑁(𝑢)  presents the nonlinear term,  ℎ(𝑥,𝑡) is the 

source term and. R is the remainder of the linear operator. Thus we get    

 

   𝐿(𝑢)  =  𝑔(𝑡) −  𝑅(𝑢) −  𝑁(𝑢)                                                    (2.3)     

                       

The methodology consists of applying Laplace transform first on both sides of   (2.1) 

 

                            𝐿[𝐿𝑢(𝑥, 𝑡)] + 𝐿[𝑅𝑢(𝑥, 𝑡)] + 𝐿[𝑁(𝑢(𝑥, 𝑡))] = 𝐿[ℎ(𝑥, 𝑡)]                               (2.4) 

 

We discuss the solution of the KdV-Bezuci equation using LDM. Eq. (1.2) can be written in an operator 

form: 

                                                    𝐿𝑢(𝑥, 𝑡) = 𝛿 𝑢𝑥𝑥 − 𝜇 𝑢𝑢𝑥 − 𝜃 𝑢𝑥𝑥                                    (2.5) 

 

where the differential operator 𝐿 is 𝐿=𝜕/𝜕𝑡 . We will define the solution u(𝑥,t) by the series in the form: 

   𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)                                                                (2.6)

∞

𝑛=0

 

and the nonlinear operator 𝑁(𝑢) represented by an infinite series of the so-called Adomian's polynomials:        

     𝑁(𝑢) = ∑ 𝑃𝑛(𝑥)                                                                     (2.7)

∞

𝑛=0

 

 

where 𝑢𝑛(𝑥, 𝑡), 𝑛 ≥ 0 are the components of 𝑢(𝑥,𝑡) that will be elegantly determined and 𝑃𝑛 are called  

Legendre's polynomials, which are a system of complete orthogonal system  with respect to the weight 

function  𝑣(𝑥)  =  1 over the interval  −1 ≤ x ≤ 1. That is a polynomial of degree n, such that 

   

∫ Pm(x) Pn(x) 

1

−1

𝑑𝑥 = 0     𝑖𝑓    𝑛 ≠ 𝑚 

and defined by Rodrigues’s formula 

 𝑃𝑛 =
1

2𝑛𝑛!
[

𝑑𝑛

𝑑𝜆𝑛
(∑ (

𝑛

𝑘
)

2

𝜆𝑖𝑢𝑖

∞

𝑖=0

)]

𝜆=0

,    𝑛 ≥ 0                                          (2.8) 

 
that represent the nonlinear term uux and given by 
 
                                                       𝑃0 = 𝑢0𝑥𝑢0 
                                                       𝑃1 = 𝑢0𝑥𝑢1 + 𝑢1𝑥𝑢0  
                                                       𝑃2 = 𝑢0𝑥𝑢2 + 𝑢1𝑥𝑢1 + 𝑢2𝑥𝑢0  
                                                       𝑃3 = 𝑢0𝑥𝑢3 + 𝑢1𝑥𝑢2 + 𝑢2𝑥 

                                    (2.9) 
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The inverse operator L
-1  

is an integral operator defined by  

 

𝐿−1 = ∫(. )

𝑡

0

𝑑𝑡                                                                                  (2.10) 

𝑈 = 𝑓0 + 𝐿−1(𝑔(𝑡) −  𝑅(𝑢) −  𝑁(𝑢))                                                         (2.11) 

 
where 𝑓0 Is the solution of homogenous equation   𝐿(𝑢) = 0 

 

The first few components of 𝑢𝑛 (𝑥, 𝑡) follows as 

 

                                                       𝑢0 (𝑥, 𝑡) = 𝑓(𝑥) 

 𝑢1 (𝑥, 𝑡) = 𝐿−1(− 𝑃0 + 𝜃 𝑢0𝑥  − 𝛿 𝑢0𝑥𝑥) 

 𝑢2 (𝑥, 𝑡) = 𝐿−1(− 𝑃1 + 𝜃 𝑢1𝑥  − 𝛿 𝑢1𝑥𝑥) 

                                                              𝑢3 (𝑥, 𝑡) = 𝐿−1(− 𝑃2 + 𝜃 𝑢2𝑥  − 𝛿 𝑢2𝑥𝑥)                                           (2.12) 

 

The scheme in (2.12) can easily determine the components un (𝑥, 𝑡) , 𝑛 ≥  0. So it is possible to calculate 

more components in the decomposition series to enhance the approximation. Using initial condition and 

plotting the solution of KdV-Bezuci equation at t = 0.01,  1,  2,  2.5 by using the fundamentals of modified 

Laplace decomposition method we get, 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1   Comparison of LDM (dotted line) and exact (solid line) solutions corresponding to KdV-Bezuci 

equation at  t = 0.01, 1, 2 and 2.5 where −20 ≤ x ≤ 20. 
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Fig. 2 The absolute error between the exact solution u(x,t) and the (LDM) solution using seven terms for 

KdV-Bezuci equation at t = 0.01, 0.05, 0.1, 1, 2 and 5 where −20 ≤ x ≤ 20. 

 

 3   The Method of Lines 

The MOL (The method of lines) has the merits of both the finite difference method and analytical method, it 

does not yield spurious modes nor have the problem of relative convergence. This method [11] is a well 

established numerical technique for the analysis of transmission lines, waveguide [12-13]. This method 

usually proceeds in two separate steps: first, approximating the spatial derivatives. Second, the resulting 

system of semi discrete (discrete in space–continuous in time) ordinary differential equations (ODEs) is 

integrated in time. The essence of the method of lines is a way of approximating PDEs by ODEs. Obviously, 

an advantage of the MOL is that one can use all kinds of ODE solvers and techniques to solve the semi-

discrete ODEs directly. 

The method of lines is regarded as a special finite difference method but more effective with respect to 

accuracy and computational time than the regular finite difference method. The MOL is generally 

recognized as a comprehensive and powerful approach to the numerical solution of time-dependent partial 

differential equations (PDEs).  
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3.1   Solving the KdV-Bezuci equation using the Method of Line  

Let’ s we study our problem in the rectangle zone 𝑎 ≤ 𝑥 ≤≤ 𝑏 , 0 ≤ 𝑡 ≤ 𝑇. 

Consider KdV-Bezuci equation (1.2) with the initial condition 

 

𝑢(𝑥, 0) = (
25𝑐

𝜇
− 100𝜇2𝛿 +

𝜃2 

𝛿
) + 12𝜇2 𝛿𝑠𝑖𝑛2(𝜇𝑥) −

12 

5
 𝜇𝜃 tan(𝑥)        (3.1.1) 

 

and the boundary conditions   

 
𝑢(𝑎, 𝑡) = 0,98 ,  𝑢(𝑥, 0) = 0,02                                           (3.1.2) 

 
The exact solution is given by  
 

𝑢(𝑥, 𝑡) = (
25𝑐

𝜇
− 100𝜇2𝛿 +

𝜃2 

𝛿
) + 12𝜇2 𝛿𝑠𝑖𝑛2(𝜇𝑥 − 𝑐𝑡) −

12 

5
 𝜇𝜃 tan(𝜇𝑥 − 𝑐𝑡)       (3.1.3) 

 
The solution domain is the rectangle 𝑎 ≤ 𝑥 ≤≤ 𝑏 , 0 ≤ 𝑡 ≤ 𝑇. 
 
 
The solution using a second order finite difference scheme for ux and uxx is denoted by Method Of Line II. 
 
The derivative 𝑢𝑥 in KdV-Bezuci equation (1.2) is computed by finite differences scheme in second order 

approximations     𝑢𝑥 =
𝑢𝑖+1−𝑢𝑖−1

2ℎ
 + 𝑂(ℎ2). 

 

The derivative 𝑢𝑥𝑥 in KdV-Bezuci equation (1) is computed by finite difference scheme in second order 

approximations     𝑢𝑥𝑥 =
𝑢𝑖−1−2𝑢𝑖+ 𝑢𝑖+1   

ℎ2  + 𝑂(ℎ2). 

 

Applying the above finite difference schemes to Eq. (1.2) yields a system of ordinary differential equations 

for the unknown  𝑢𝑖 as functions in t as follows: 

 

𝑑𝑢𝑖(𝑡) 

𝑑𝑡
= 𝑓(𝑢𝑖)   ,   𝑖 = 1, … … , 𝑁 − 1 

 

Thus, we have the system of differential equations of one independent variable t. This system can be easily 

solved by using fourth order Runge–Kutta scheme. 

 

𝑈𝑛+1 = 𝑈𝑛 +
∆𝑡(𝐾1+𝐾2+2𝐾3+𝐾4) 

6
 ,      

𝐾1 = 𝐹(𝑈𝑛),     𝐾2 = 𝐹 (𝑈𝑛 +
∆𝑡 

2
) 𝐾1 ,    𝐾3 = 𝐹 (𝑈𝑛 +

∆𝑡 

2
) 𝐾2 ,    𝐾4 = 𝐹(𝑈𝑛 + ∆𝑡𝐾3 )  

 

The results obtained using the method of lines have been compared with the exact solution as a plots of the 

solution and the absolute error (AE) profiles of the KdV-Bezuci equation where θ and δ are constants at   

c = 0.5,   ∆t = 10
-3

,  v = θ/10δ ,   t ∈ [0,30].  

We obtain the Method of line solutions of KdV–Bezuci equation with high accuracy. The obtained results 

demonstrate the reliability of the MOL and its wider applicability to nonlinear evolution equations.  

 

 

 

 

 



Leonard Bezati, IJSRM Volume 07 Issue 09 September 2019 [www.ijsrm.in]    M-2019-178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Comparison of Method of line(dotted line) and exact (solid line) solutions at N = 500,  = 0.02,  = 

0.2, c = 0.5, v =∈ [0, 30]. 
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Fig. 4: The absolute error between the exact solution  u(x,t) and the (MOL I) solution for KdV-Bezuci 

equation for 
t ∈ [0, 30]. 

 

4   Conclusion 

In this article, we conclude that the nonlinear KdV– Bezuci equation gives solution, which represents an 

important application in physical problems. The computations associated here were performed using Maple. 

We have presented the following tables to describe the absolute errors between the exact and numerical 

solutions. The tables illustrate the errors for both methods, the Laplace decomposition method and the 

method of lines compared with the exact solution, at different values of t. 

A review of the decomposition method [14]  and a new algorithm for calculating Legendre polynomial for 

nonlinear operators [15] we have presented. The method of lines and Laplace decomposition method have 

been implemented for obtaining solutions of the KdV-Bezuci equations. The results show that the 

considered methods are powerful mathematical tools for obtaining accurate solutions. A comparison 

between MOL and LDM shows that the accuracy of the MOL is better than that in the LDM for solutions 

when the time increase.  

A comparison between the numerical MOL and the decomposition methods with those obtained by exact 

solution are given for ∆𝑡 =10
−3

. From the tables, we can observe that the decomposition method is accurate 
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as compared with MOL at small period of time but with increasing the time, the MOL is more accurate 

when compared with LDM. It is observed that if we increase the number of terms in algorithm, the size of 

calculation is maximized with no increase in accuracy so the reduction of terms facilities the construction of 

Legendre polynomials for nonlinear operators and gives the same accuracy. LDM can provide the solution 

with minimal number of iterations. 

From the comparative study between LDM and the MOL we may conclude that the MOL is more accurate 

than LDM.  
 
From the above tables we can infer that LDM have better convergence at small t. However, a closer look at 

the errors of LDM reveals that the error considerably increments with increasing the time. This is an 

indication of little stability on the part of LDM, in contrast to the MOL.  
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