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Abstract:  

Numerous engineering structures take place in many fields such as construction, automotive, naval 

industry, aerospace, etc. Parabolic frame structures have a significant role in those industries. There are 

many gaps in terms of the literature studies about these structures. In this paper, free vibration and 

buckling behavior of parabolic frame structures by using the finite element method are investigated. The 

structure is modeled by considering a frame element that has three degrees of freedom and neglects the 

displacement in y-axis. In addition, two–bay parabolic frame structure with different radius of curvature is 

investigated. The numerical results are compared with the CAD model of the structure by using Solid 

Works for various cases. It is concluded that the results are in very good agreement with those results that 

are obtained from Solid Works. It is also understood that for the different radius of curvatures the 

approach that is used for finite element buckling analysis in perpendicular distributed loading case does 

not change. 
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1. Introduction 

Parabolic frame structures are used in various engineering fields such as construction, automotive, naval 

industry, aerospace, etc. However, the studies that take them into account are limited. Nevertheless, there are 

numerous studies about beams and curved beams that can contribute future works about parabolic frames. 

Leontovich [1] is the one who investigated the parabolic frames and arches. In this book, parabolic frames 

and arches are taken into account statically in various loading cases. Chidamparam and Leissa [2] studied on 

the vibration behavior of planar curved beams, arches, and rings. They review many studies that comprise 

in-plane vibrations, out of plane vibrations, coupled vibrations, nonlinear vibrations, etc. Kang et al. [3] 

worked on free vibration analysis of planar curved beams by utilizing wave propagation with general 

boundary conditions and supports. Zhu and Meguid [4] developed a new curved beam element that satisfies 

inextensible bending mode conditions by using a three-node locking free curved beam element. Akgöz and 

Civalek [5] investigated the free vibration analysis of axially functionally graded tapered Bernoulli-Euler 

microbeams. They utilized the Rayleigh-Ritz method in order to obtain the solution of the free transverse 

vibration problem. Pradhan and Chakravery [6] worked on the free vibration analysis of both Euler and 

Timoshenko functionally graded beams. They obtained the governing equations by using the Rayleigh-Ritz 

method. Eltaher et al. [7] studied on the vibration analysis of Euler-Bernoulli nanobeams. They employ the 

finite element method in order to obtain numerical results. Bazoune and Khulief [8] investigated the free 

vibration analysis of rotating tapered Timoshenko beams. They used a finite element beam that has four  

degrees of freedom including shear deformations. Cleghorn et al. [9] Studied on a finite element model for 

the vibration of rings with unsymmetrical cross-sections. They developed a finite element model for free, 

coupled in-plane and out of plane conditions. Fotouhi [10] performed the dynamic analysis of flexible beams 

with large deflections. Cantilever beam and rotating flexible robot arms are taken into account as example 

structures. Ozturk [11] studied on the vibration analysis of a pre-stressed laminated composite curved beam 
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by employing the finite element method with a straight –beam element approach. The effects of orientation 

angle and vertical loading on the natural frequency are investigated for the first four modes. Kiral et al. [12] 

investigated the stability of delaminated composite beams via finite element analysis for different stacking 

sequences. Mehmood [13] studied the vibration analysis of frame structure that is subjected to moving loads.  

Basci et al. [14] presented an improved method for free vibration analysis of frame structures for various 

boundary conditions. Chan [15] performed a buckling analysis of structures that are composed of tapered 

members.  

In this paper, the free vibration and buckling analysis of the single-bay and the two-bay isotropic parabolic 

frames are investigated. It is seen that there is not any study related to this topic in literature. The parabolic 

frame structures are modelled by considering Euler-Bernoulli beam theory. All equations are formulated and 

solved in MATLAB. In order to compare numerical results, the same structures are modelled and analyzed 

in SolidWorks. 

 

2. Theoretical Analysis 

2.1 Finite Element Model 

The finite element method is employed in order to model the parabolic frame structure as seen in Fig.1. To 

satisfy all degrees of freedom for such structure, a two-nodded frame element with three degrees of freedom 

(DOF), which is shown in Fig.2, is taken into account. 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1: Parabolic frame structure 

 

 

 

 

 
 

Figure 2: The frame element 

 

The longitudinal displacement u is represented with a first-order polynomial equation while the bending 

displacement v, is defined as a cubic function in order to satisfy the rotation effect. 
 

𝑢 = 𝑎1 + 𝑎2𝑥 (1) 

 

𝑣 = 𝑎3 + 𝑎4𝑥 + 𝑎5𝑥2 + 𝑎6𝑥3 (2) 

 

The slope v', is equal to the first derivative of the bending displacement with respect to x. 
 

v′ =
dv

dx
 (3) 

 

The generalized displacement vector for the frame element can be expressed as 
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𝒒 = [𝑢1   𝑣1  𝑣′
1  𝑢2   𝑣2  𝑣′

2] (4) 

The strain energy for frame element is given as 
 

Ue =
1

2
EI ∫

∂2v

∂x2

L

0

dx +
1

2
EA ∫

∂2u

∂x2

L

0

𝒅𝒙 (5) 

 

where E is the modulus of elasticity of the material, A is the cross-sectional area of the element and I is the 

second moment of inertia of the element. Eq.5 can be written in matrix form as 

𝑈𝑒 =
1

2
𝒒𝑻𝒌𝒆𝒒 (6) 

where ke is the element geometry matrix. 

 

The Kinetic Energy for frame element is  

𝑇𝑒 =
1

2
∫ 𝜌𝐴(�̇�2 + �̇�2)

𝐿

0

𝑑𝑥 (7) 

where ρ is the density of the material. Writing Eq.7 in matrix form as 
 

𝑇𝑒 =
1

2
𝒒𝑻𝒎𝒆𝒒 (8) 

 

where me is the element mass matrix. The work done by the applied load is expressed as 
 

𝑉𝑒 =
1

2
𝑊 ∫ (

𝜕𝑣

𝜕𝑥
)

2
𝐿

0

𝑑𝑥 (9) 

 

where 
 

𝑃 = 𝑊𝐿𝑏 (10) 

 

where P represents the point load. Hence, 

𝑉𝑒 =
1

2
𝑊 ∫ (

𝜕𝑣

𝜕𝑥
)

2
𝐿

0

𝑑𝑥 (11) 

 

Writing Eq.11 in matrix form, 
 

𝑉𝑒 =
1

2
𝒒𝑻𝒌𝒈𝒆𝒒 (12) 

where kge is the element geometry matrix. 

 

Once all element matrices are obtained, they are needed to be transformed in terms of reference coordinates 

as it is given in Fig.3 by using Eq.13 since the curvature and the structure itself is composed of straight 

beams. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: Transformation of local coordinates  

 



 

Oguzhan DAS, IJSRM Volume 07 Issue 12 December 2019 [www.ijsrm.in] EC-2019-298 

 

�̅�𝒆 = 𝑻𝑻𝒌𝒆𝑻,   �̅�𝒆 = 𝑻𝑻𝒎𝒆𝑻 , 𝒂𝒏𝒅  �̅�𝒈𝒆 = 𝑻𝑻𝒌𝒈𝒆𝑻 (13) 

 

where T is the transformation matrix which is, 
 

𝑻 = [
cos𝜃 sin𝜃 0

−sin𝜃 cos𝜃 0
0 0 1

] (14) 

 

 

2.2 Free Vibration Analysis 

The dynamic response of the parabolic frame structure can be obtained by using Lagrange’s equation of 

motion as  
 

𝑴�̈� + 𝑲𝒒 = 𝟎 (15) 

and the eigenvalue problem is 
 

(𝑲 − 𝜆𝑴)𝒒 = 𝟎 (16) 
 

where K is the global stiffness matrix, M is the global mass matrix and λ is the eigenvalue or, in other 

words, the natural frequency values of the system. 
 

2.3 Buckling Analysis 

The critical buckling load for a system is found by using the eigenvalue problem given in Eq. 17. 
 

(𝑲 − 𝑃𝑐𝑟𝑲𝒈)𝒒 = 𝟎 (17) 

 

where Kg is the global geometry matrix and Pcr is the critical buckling load. 
 

3. Numerical Analysis  

In this study, free vibration and buckling analysis of parabolic frames are investigated. Four different radius 

of curvature values are selected in order to find out the effect of the curvature on the dynamic behavior and 

critical buckling load of the structure. To also investigate the thickness effect, two different thickness 

parameter is taken into account. Additionally, the two-bay structure is also considered for free vibration and 

buckling analysis. Material properties and geometric properties of the structure are given in Table 1. A 

MATLAB code is developed in order to solve the free vibration and buckling problem. The distributed 

loading case given in Fig.4 is taken into account to solve the buckling problem.  In order to simplify the 

problem, the distributed load is transformed into a two-point load that acts to the columns of the structure as 

seen in Fig.5. 

Table 1: Material properties and geometry of the structure 

Property Symbol Quantity 

Elastic Modulus E 69 GPa 

Density ρ 2700 kg/m3 

Poisson Ratio ν 0.33 

Geometric Properties of the Structure 

Beam Length Lb 1000 mm 

Cross-section 
h Lb/100 

b 
 

Lb/100 

 

 

 
 

 

 

 

 

 



 

Oguzhan DAS, IJSRM Volume 07 Issue 12 December 2019 [www.ijsrm.in] EC-2019-299 

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4: Distributed loading case (a) Equivalent loading (b) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5: Equivalent loading case for parabolic frame structure 

 

3.1 Effect of the radius of curvature 

For a single bay structure, the effect of the radius of curvature (Rxx) on dynamic behavior and critical 

buckling load are investigated. Different radius of curvatures is taken into account as is seen in Fig.6.  
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 6: The parabolic frame structure with different curvatures 

(b) (a) 
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Comparative results of free vibration analysis and critical buckling load of the parabolic frame structure for 

various curvature values are given in Tables 2 and 3. 
 

Table 2: Free vibration and buckling analysis of the parabolic frame structure for Rxx=1.5Lb and Rxx=2Lb (N.F.: Natural 

Frequency Values, Pcr: Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

 

N.F. 
(Hz) 

Rxx=1.5Lb Rxx=2Lb 

SW PS Err (%) SW PS Err (%) 

f1 8.08 8.28 2.49% 8.13 8.29 1.86% 

f2 30.49 31.87 4.49% 31.09 32.05 3.08% 

f3 50.98 52.82 3.61% 51.56 53.02 2.82% 

f4 61.34 60.22 1.84% 60.54 59.61 1.53% 

f5 112.14 115.46 2.96% 113.54 115.66 1.87% 

Pcr (N) 945.49 948.50 0.32% 951.26 948.90 0.25% 

 

 
Table 3: Free vibration and buckling analysis of the parabolic frame structure for Rxx=2.5Lb and Rxx=3Lb (N.F.: Natural 

Frequency Values, Pcr: Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

N.F. 
(Hz) 

Rxx=2.5 Lb Rxx=3 Lb 

SW PS 
Err 
(%) 

SW PS Err (%) 

f1 8.16 8.29 1.61% 8.17 8.30 1.49% 

f2 31.43 32.16 2.30% 31.64 32.23 1.87% 

f3 51.88 53.14 2.41% 52.07 53.22 2.19% 

f4 60.05 59.26 1.33% 59.68 59.03 1.09% 

f5 114.23 115.79 1.37% 114.62 115.87 1.09% 

Pcr (N) 954.54 949.08 0.57% 956.4 949.17 0.76% 

 

The first five natural frequency values and the critical buckling load for four different curvatures are given 

in Tables 2 and 3. It is concluded that the present study is in very good agreement with SolidWorks results. 

As the curvature increases, the first three and the fifth natural frequency increase whereas the fourth natural 

frequency decreases. This is because all components of the structure have the same displacement 

characteristics in the fourth mode as seen in Fig. 7d. All mode shapes are the same for all curvatures and 

given in Fig.7. The critical buckling load increases as the radius of curvature increases. 
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Figure 7: The first five modes of the parabolic frame structure 

Comparative results of free vibration analysis and critical buckling load of the straight frame structure 

(Rxx=∞) for various curvature values are given in Table 4. It is seen that the first three and fifth natural 

frequencies are at the highest values when compared with the results given in Tables 2 and 3. In contrast, the 

fourth natural frequency is at the lowest value as is expected. The critical buckling load is also at its highest 

value when compared with Tables 2 and 3. 

Table 4: Free vibration and buckling analysis of the straight frame structure for Rxx=∞ (N.F.: Natural Frequency Values, Pcr: 

Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

N.F. 
(Hz) 

Straight Frame Structure (Rxx=∞) 

SW PS Err (%) 

f1 8.24 8.13 1.21% 

f2 32.59 32.13 1.03% 

f3 52.98 52.25 1.37% 

f4 57.76 56.88 0.81% 

f5 116.40 114.80 1.04% 

Pcr (N) 964.05 962.19 1.32% 

 

3.2 Effect of the thickness (h) 

For a single bay structure, the effect of the thickness (h) on dynamic behavior and critical buckling load is 

investigated for fixed boundary condition. Two different thickness parameters, h1=a/100 and h2=a/50, are 

selected, and the curvature is set as Rxx=2Lb.  
 

(a) (b) 

(c) (d) 

(e) 
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Table 5: Free vibration and buckling analysis of the parabolic frame structure for h1=Lb/100 h2=Lb/50 (N.F.: Natural Frequency 

Values, Pcr: Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

N.F. 
(Hz) 

h1=Lb/100 h2=Lb/50 

SW PS Err (%) SW PS Err (%) 

f1 8.13 8.29 1.86% 16.21 16.57 2.21% 

f2 31.09 32.05 3.08% 62.15 64.06 3.07% 

f3 51.56 53.02 2.82% 102.59 106.03 3.35% 

f4 60.54 59.61 1.53% 120.73 119.07 1.37% 

f5 113.54 115.66 1.87% 226.16 230.81 2.06% 

Pcr (N) 950.13 948.90 0.25% 15337 15180 1.02% 

 

As seen in Table 5, two different thickness (h) parameter is compared each other in terms of natural 

frequency and critical buckling load. The natural frequency values increases or decreases as the same as the 

thickness ratio as expected.  The critical buckling load increases as the structure thickness increases. 

However, the increment is not the same as that of the natural frequency. This is because the ratio is not the 

same since the relation between the stiffness matrix and mass matrix is not the same as the stiffness matrix 

and geometric matrix. 
 

3.3 The Two-Bay structure 

In addition to the single-bay structure, the two-bay parabolic frame structure is also investigated. Free 

vibration analysis and buckling analysis are performed under all columns fixed boundary conditions. The 

curvature is taken as Rxx =2Lb and the thickness is set as h=Lb/100.  

The loading condition is given as is in Fig.8. The equivalent loading case for finite element analysis is given 

in Fig.9. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Distributed loading case for the two-bay parabolic frame structure 
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Figure 9: Equivalent loading case for the two-bay parabolic frame structure 

 

Comparative results of the free vibration analysis and buckling analysis for the two-bay parabolic frame 

structure is given in Tables 6 and 7. 
 

Table 6: Free vibration and buckling analysis of the two-bay parabolic frame structure for Rxx=1.5Lb and Rxx=2Lb (N.F.: Natural 

Frequency Values, Pcr: Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

N.F. 
(Hz) 

Rxx=1.5Lb Rxx=2Lb 

SW PS Err (%) SW PS Err (%) 

f1 7.42 7.66 3.29% 7.47 7.67 2.71% 

f2 29.48 31.01 5.19% 29.97 31.12 3.86% 

f3 34.45 37.73 9.52% 35.74 38.26 7.04% 

f4 51.13 53.29 4.22% 51.67 53.46 3.48% 

f5 59.98 59.77 0.34% 59.37 59.30 0.12% 

Pcr (N) 1429.1 1453.7 1.72% 1439.8 1455.3 1.08% 

 

Table 7: Free vibration and buckling analysis of the two-bay parabolic frame structure for Rxx=2.5Lb and Rxx=3Lb  (N.F.: The 

Natural Frequency Values, Pcr: The Critical Buckling Load, SW: SolidWorks Results, PS: Present Study Results, Err: Error) 

N.F. 
(Hz) 

Rxx=2.5Lb Rxx=3Lb 

SW PS Err (%) SW PS Err (%) 

f1 7.50 7.68 2.39% 7.51 7.68 2.29% 

f2 30.23 31.19 3.20% 30.38 31.24 2.83% 

f3 36.50 38.57 5.70% 36.97 38.78 4.90% 

f4 51.93 53.57 3.15% 52.10 53.63 2.94% 

f5 58.94 59.03 0.14% 58.65 58.85 0.34% 

Pcr (N) 1437.2 1456.1 1.32% 1448.3 1456.7 0.58% 

 

As seen in Tables 6 and 7, agreement between the present finite element models and SolidWorks solution 

results is good. Differently from the single-bay results, the fifth natural frequency value decreases as the 

curvature increases. This is because the fifth mode is similar to the fourth mode of the single-bay structure 

which all components of the structure behave have the same displacement characteristics.  

The critical buckling load changes in the same way as the curvature. 
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Figure 10: The first five modes of the two-bay parabolic frame structure 
 

4. Conclusions and Discussions 

In this paper, free vibration and buckling analysis of the parabolic frame structure are investigated by using 

the finite element method. According to the results given in section 3, it is concluded that 

 The natural frequency values and critical buckling loads that are obtained via the finite element 

method by using a frame element are in very good agreement with SolidWorks results for both 

parabolic and straight frames. 

 For the single-bay structure, all natural frequency values, except the fourth natural frequency value, 

increase as the radius of curvature increases. On the other hand, the fourth frequency value 

decreases. This is because the structural components behave in the same displacement characteristic 

in this mode. 

 For the two-bay structure, all natural frequency values, except the fifth natural frequency value, 

increase as the radius of curvature increases. Similar to the single-bay structure, this is because the 

structural components behave in the same displacement characteristic in this mode. 

 The critical buckling load increases when the radius of curvature increases for both single-bay and 

multi-bay parabolic frame structure. 

 The equivalent loading approach that is used for straight frame structures in order to perform finite 

element analysis is also valid for parabolic frame structures under perpendicular distributed loading 

condition. 

 As is expected, the natural frequency and the critical buckling values increase as the thickness of the 

parabolic frame structure increase.  
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