Finite Volume Methods for Non-Linear Equations

${ }^{1}$ L. Bezati \& ${ }^{1}$ Sh. Hajrulla \& ${ }^{2}$ F.Hoxha
${ }^{1}$ University of Vlora ${ }^{1}$, Albania
${ }^{2}$ University of Tirana, Albania

Abstract

: We consider the classical numerical-type of models. In the first part we deal with finite difference numerical model for irotational water waves. Finite volume methods are based on the integral form. A numerical model for solving the two-dimensional equations is presented. The standard Galerkin method with mixed interpolation is applied. In the second part we consider the water wave equation with a logarithmic nonlinearity. Using the Galerkin method, we establish the existence of solutions of the problem.

Keywords: numerical model, logarithmic nonlinearity, Galerkin method, global solutions, water equation

Introduction

We deal with water wave equation. We want to obtain a model for non-linear equations. In the first part using the fully non-linear model for irrotational water waves in the form (see [1], [2]) given as

$$
\begin{equation*}
0=\delta L=\delta \iint L d x d t \tag{1.1}
\end{equation*}
$$

we consider the finite volume method. Finite volume methods are based on the integral form of the conservation law

$$
\begin{gather*}
\frac{d}{d t} \int_{x_{1}}^{x_{2}} q(x, t) d x+f\left(q\left(x_{2}, t\right)\right)-f\left(q\left(x_{1}, t\right)\right) \\
=0 \tag{1.2}
\end{gather*}
$$

Dingemans (1997) describes several methods with positive-definite Hamiltonian, but these methods are quite tedious and have certain ambiguities regarding the order of certain operators, (see [3], [4]). The present method leads to a positivedefinite Hamiltonian and can be fully non-linear if desired. The present model is an additional elliptic equation in the horizontal plane has to be solved (see [6]). High-order non-linear models solve freesurface evolution equations derived from a Hamiltonian under the constraint that the Laplace
equation is satisfied exactly in the interior of the fluid domain (see [7]).
In the second part we deal with the existence and decay of solutions of the following problem

$$
\begin{align*}
& u_{t t}+A u+u+h\left(u_{t}\right)=k u l n|u| \tag{1.3}\\
& \text { with boundary conditions } \\
& \begin{array}{l}
u(x, t)=\frac{\partial u}{\partial v}(x, t)=0, \quad x \in \partial \Omega, \mathrm{t}>0 \\
u(x, 0)=u_{0}(x) ; \quad u_{t}(x, 0)=u_{1}(x)
\end{array}
\end{align*}
$$

where $\Omega \subset R^{n}, \mathrm{n} \geq 1$ is a bounded domain with smooth boundary $\partial \Omega, \mathrm{k} \geq 1$ and $A=(-\nabla)^{m}$, ($m \geq 1$), v is the unit outer normal to $\partial \Omega$ and k is a positive real number. This type of problems has applications in many branches of physics such as nuclear physics, optics and geophysics [5,6,11]. In [8], Cazenave and Haraux considered

$$
\begin{equation*}
u_{t t}-\nabla u=u \ln |u|^{k} \tag{1.4}
\end{equation*}
$$

M. Al-Gharabli And S. A. Messaoudi J. Evol. Equ. and established the existence and uniqueness of the solution for the Cauchy problem. Hiramatsu et al. [9] introduced the following equation

$$
\begin{equation*}
u t t-u+u+u t+|u| 2 u=u \ln |u| \tag{1.5}
\end{equation*}
$$

to study the dynamics, Q-ball in theoretical physics.

1. Finite difference numerical model for

 irrotational water wavesFully non-linear model for irrotational water waves in the form (see [1], [2]) given as

$$
\begin{equation*}
0=\delta L=\delta \iint L d x d t \tag{1.6}
\end{equation*}
$$

where the Lagrangian density is

$$
\begin{gathered}
L\left(\zeta, \partial t \zeta, \phi, \partial_{x} \varphi, \partial_{z} \varphi ; x, t\right) \\
L=\phi \partial_{t} \zeta-H \quad \text { with } \phi=[\varphi]_{z}=\zeta
\end{gathered}
$$

where $\zeta(x, t)$ is the surface elevation, $\varphi(x, z, t)$ is the velocity potential. Than the energy density $H\left(\zeta, \partial_{x} \varphi, \partial_{z} \varphi ; x, t\right)$ is given by the sum of kinetic and potential energy densities as follows

$$
H=\int_{-h}^{\zeta} \frac{1}{2}\left[\left(\partial_{x} \varphi\right)^{2}+\left(\partial_{z} \varphi\right)^{2}\right] d z+\frac{1}{2} g \zeta^{2}
$$

while the mass density ρ is taken to be constant and equal to one. Further $h(x)$ is the still-water depth and g is the gravitational acceleration.
Note that the Hamiltonian $\bar{H}\left(\zeta, \partial_{x} \varphi, \partial_{z} \varphi\right)$ itself is the partial integral of H :

$$
\begin{equation*}
\bar{H}=\int H d x \tag{1.7}
\end{equation*}
$$

Let we see the potential $\varphi(x, z, t)$, corresponding with a parabolic behaviour over depth with $\partial_{z} \varphi=$ 0 at the bed and $\varphi=\phi$ at the free surface:

$$
\begin{gather*}
\varphi(x, z, t)=\phi(x, t)+f(z ; h, \zeta) \psi(x, t) \\
f(z ; h, \zeta)=\frac{1}{2}(z-\zeta) \frac{h+z+\zeta}{h+\zeta} \tag{1.8}
\end{gather*}
$$

We want time derivatives of $\zeta(x, t)$ and $\phi(x, t)$ to appear in the Euler-Lagrange equations. Note that for a horizontal bottom we have $\partial_{z} \varphi=0$ at $z=-h$. The velocity components become:

$$
\begin{gathered}
\partial_{x} \varphi=\partial_{z} \varphi-\frac{1}{2}\left(1+\left(\frac{h+z}{h+\zeta}\right)^{2}\right] \psi \partial_{x} \zeta+ \\
f(z ; h, \zeta) \partial_{x} \psi \\
(1.9)
\end{gathered}
$$

where $\quad \partial_{z} \varphi=\frac{h+z}{h+\zeta} \psi$. Note that $\psi(x, t)$ is the vertical velocity $\partial_{z} \varphi$ at $z=\zeta(x, t)$.

Energy density H is:

$$
\begin{array}{r}
H=\frac{1}{2}(h+\zeta]\left[\partial_{x} \varphi-\frac{1}{2} \psi \partial_{x} \zeta-\frac{1}{3}(h+\right. \\
\left.\zeta) \partial_{x} \psi\right]^{2}+\frac{1}{90}(h+\zeta)\left[\psi \partial_{x} \zeta-(h+\right. \\
\left.\zeta) \partial_{x} \psi\right]^{2}+\frac{1}{6}(h+\zeta) \psi^{2}+\frac{1}{2} g+\zeta^{2} \tag{1.10}
\end{array}
$$

We take variations of L with respect to ϕ, ζ and ψ we get from $\delta L=0$ and introduce $u \equiv \partial_{x} \varphi$, and note that the discharge $q(x, t)$ and depthaveraged velocity $U(x, t)$ are: $q \equiv(h+\zeta) U$, and

$$
\begin{equation*}
U=u-\frac{2}{3} \psi \partial x \zeta-\frac{1}{3}(h+\zeta) \partial_{x} \psi \tag{1.11}
\end{equation*}
$$

Step by step following all actions we have to solve two time-evolution equations for $\zeta(x, t)$ and $u(x$, t), as well as an elliptic equation for $\psi(x, t)$. For full steps we can [4]. Then the system of equations to be solved can be written as:

$$
\partial_{t} \zeta+\partial_{x}((h+\zeta) U)=0
$$

Finally,

$$
\begin{align*}
& (h+\zeta] \psi\left[\frac{1}{3}+\frac{7}{15}\left(\partial_{x} \zeta\right)^{2}\right]^{2}-\left[\frac{2}{3}(h+\zeta) u-\right. \\
& \left.\frac{1}{5}(h+\zeta)^{2} \partial_{x} \psi\right] \partial_{x} \zeta+\partial_{x}\left[\frac{1}{3}(h+\zeta)^{2} u-\right. \\
& \left.\frac{1}{5}(h+\zeta)^{2} \psi \partial_{x} \zeta-\quad \frac{2}{15}(h+\zeta)^{3} \partial_{x} \psi\right]=0 \tag{1.12}
\end{align*}
$$

2. Preliminaries

In this section we deal with the existence of solutions of the following problem for the water wave equation with logarithmic term.

$$
\begin{equation*}
u_{t t}+A u+u+h\left(u_{t}\right)=k u \ln |u| \tag{2.1}
\end{equation*}
$$

with boundary conditions

$$
\begin{aligned}
& u(x, t)=\frac{\partial u}{\partial v}(x, t)=0, \quad x \in \partial \Omega, \mathrm{t}>0 \\
& u(x, 0)=u_{0}(x) ; \quad u_{t}(x, 0)=u_{1}(x)
\end{aligned}
$$

where $\Omega \subset R^{n}, \mathrm{n} \geq 1$ is a bounded domain with smooth boundary $\partial \Omega, \mathrm{k} \geq 1$ and $A=(-\Delta)^{m}$, ($m \geq 1$), v is the unit outer normal to $\partial \Omega$ and k is a positive real number, $\mathrm{x} \in \Omega, \mathrm{t}>0$.

Definition 2.1.(_weak solution of eq. (2.1))
A continuous function $\mathrm{u}=\mathrm{u}(t, x)$ is a global weak solution to the Cauchy problem (1.2) if:
$\mathrm{u}=\mathrm{u}(t, x) \in C((0, \infty) \times \Omega) \cap L^{\infty}\left(R, H^{m}(\Omega)\right)$
and $\|u\|_{H^{m}(\Omega)} \leq\left\|u_{0}\right\|_{H^{m}(\Omega)} \quad \forall t>0 \mathrm{u}(t, x)$ satisfies equation (1-2) in the sense of distributions.

Lemma 2.2..Logarithmic Sobolev inequality
(see $[13,14]$). Let \boldsymbol{u} be any function in $H_{0}{ }^{m}(\Omega)$ and $a>0$ be any number. Then

$$
\begin{gather*}
2 \int_{\Omega}|\mathrm{u}|^{2} \ln |\mathrm{u}| d x \leq \frac{1}{2}\|u\|^{2} \ln \|u\|^{2}+ \\
\frac{c a^{2}}{2 \pi}\|A u\|^{2}-(1+\ln a)\|u\|^{2} \tag{2.2}
\end{gather*}
$$

Lemma 2.3. Logarithmic Gronwall inequality
(see [8]). Let $\boldsymbol{c}>0$ and $\gamma \in(0, T, \Omega)$. Let ω be any function ω : $[0, T[\rightarrow[1, \infty[$ satisfies
$\omega \leq c\left(1+\int_{0}^{t} \gamma(s) \omega(s) \ln \omega(s) d s\right), 0 \leq t \leq T$
then $\quad \omega \leq c \exp \left(c \int_{0}^{t} \gamma(s) d s\right), 0 \leq t \leq T$

Lemma 2.4. The Cautchy - Schwartz inequlity
Recall: For the Hilbert space with a norm (u, v) and its resulted norm $\|(u, v)\|=\sqrt{(u, v)}$, than the Cauchy-Schwartz inequality is the following, $|u(x), v(x)| \leq\|u\|\|v\|$

3. Galerkin method for existence of solutions

We use the standard Faedo-Galerkin method for the existence of solutions for the water wave equation with logarithmic term (2.1).

Theorem 3.1

Let $\left(u_{0}, u_{1}\right) \in \mathrm{H}_{0}^{\mathrm{m}}(\Omega) \times L^{2}(\Omega)$. Then, problem of equations (2.1) has a global week solution as $u=u(t, x) \in C((0, T)$, $\left.H_{0}^{m}(\Omega) \cap C^{1}(0, T), L^{2}(\Omega) \cap C^{2}(0, T), H^{m}(\Omega)\right)$

Proof: To proof the theorem we consider the standard Faedo-Galerkin method. We take an orthogonal basis of the space $H_{0}^{m}(\Omega)$ in the form $\left\{\omega_{j}\right\}_{j=1}^{\infty}$. This is othonormal in $L^{2}(\Omega)$. Let $V_{m}=\operatorname{span}\left\{\omega_{1}, \omega_{2}, \ldots \ldots \omega_{m}\right\}$ and let the projections of the initial data on the subspace V_{m} be given by

$$
\begin{gathered}
u_{0}^{m}(x)=\sum_{j=1}^{m} a_{j} \omega_{j}(x), \quad u_{1}^{m}(x)= \\
\sum_{j=1}^{m} b_{j} \omega_{j}(x)
\end{gathered}
$$

where $u_{0}^{m} \rightarrow u_{0}$ in $H_{0}^{m}(\Omega)$ and $u_{1}^{m} \rightarrow$ u in $L^{2}(\Omega)$, as $m \rightarrow \infty$.

We search for an approximate solution $u^{m}(x, t)=\sum_{j=1}^{m} g_{j}^{m}(t) \omega_{j}(x)$ of the approximate problem in V_{m}
$\left\{\begin{array}{l}\int_{\Omega}\left(u_{I I}^{m} w+\Delta u^{m} \Delta w+u^{m} w+h\left(u_{t}^{m}\right) w\right) d x=\int_{\Omega} w u \\ u^{m}(0)=u_{0}^{m}=\sum_{j=1}^{m}\left(u_{0}, \omega_{j}\right) w_{j} \\ u_{1}^{m}(0)=u_{1}^{m} \sum_{j=1}^{m}\left(u_{1}, w_{j}\right) w_{j}\end{array}\right.$
This leads to a system of ODE_{s} for unknown functions $g_{j}^{m}(t)$. Based on standard excistence theory for ODE, one can obtain functions:

$$
g_{j}:\left[0, t_{m}\right) \rightarrow R, \quad j=1,2, \ldots, m,
$$

which satisfy $(3,4)$ in a maximal interval $\left[0, t_{m}\right), t_{m} \in(0, T]$. Next we show that $t_{m}=T$ and that the local solution is uniformly bounded independent of m and t. For this purpose, let $\mathrm{w}=u_{t}^{m}$ in $(3,4)$ and integrate by parts to obtain

$$
\begin{align*}
& \frac{d}{d t} E^{m}(t)=-\int_{\Omega} u_{t}^{m} h\left(u_{t}^{m}\right) d x \\
& \leq 0 \tag{3.5}
\end{align*}
$$

where,

$$
\begin{align*}
& E^{m}(t) \\
& =\frac{1}{2}\left(\left\|u_{t}^{m}\right\|_{2}^{2}+\left\|\Delta u^{m}\right\|_{2}^{2}+\left(\frac{k+2}{2}\right)\left\|u^{m}\right\|_{2}^{2}\right. \\
& \left.-\int_{\Omega}\left|u^{m}\right|^{2} \ln \left|u^{m}\right|^{k} d x\right) \tag{3.6}
\end{align*}
$$

The last inequality together with the Logarithmic Sobolev inequality leads to

$$
\begin{align*}
& \left\|u_{t}^{m}\right\|_{2}^{2}+\left(1-\frac{k a^{2} c_{p}}{2 \pi}\right)\left\|\Delta u^{m}\right\|_{2}^{2} \\
+ & {\left[\left(\frac{k+2}{2}\right)+k(1+\ln a]\left\|u^{m}\right\|_{2}^{2}\right.} \\
\leq & C+\left\|u_{t}^{m}\right\|_{2}^{2} \ln \left\|u^{m}\right\|_{2}^{2} \tag{3.7}
\end{align*}
$$

Choossing $e^{\left(-\frac{3}{2}-\frac{1}{2 k}\right)}<a<\sqrt{\frac{2 \pi}{k c p}}$ will make $1-\frac{k a^{2} c p}{2 \pi}>0$ and $\left(\frac{k+2}{2}\right)+k(1+\ln a) \geq 0$

This selection is possible thanks to (A2). So, we get

$$
\begin{align*}
& \left\|u_{t}^{m}\right\|_{2}^{2}+\left\|\Delta u^{m}\right\|_{2}^{2}+\left\|u^{m}\right\|_{2}^{2} \leq \underset{(3.8)}{C(1+} \\
& \left.\left\|u^{m}\right\|_{2}^{2} \ln \left\|u^{m}\right\|_{2}^{2}\right) \tag{3.8}
\end{align*}
$$

Note $u^{m}(\cdot, t)=u^{m}(\cdot, 0)+\int_{0}^{t} \frac{\partial u^{m}}{\partial_{s}}(\cdot, s) d s$
Then, using Cauchy-Schwarz' inequality, we get

$$
\begin{align*}
&\left\|u^{m}(t)\right\|_{2}^{2} \leq 2\left\|u^{m}(0)\right\|_{2}^{2} \\
&+ 2\left\|\int_{0}^{t} \frac{\partial u^{m}}{\partial_{s}}(s) d s\right\|_{2}^{2} \\
& \leq 2\left\|u^{m}(0)\right\|_{2}^{2} \\
&+ 2 T \int_{0}^{t}\left\|u_{t}^{m}(s)\right\|_{2}^{2} d s \tag{3.9}
\end{align*}
$$

$\left\|u^{m}(t)\right\|_{2}^{2}$
$\leq 2\left\|u^{m}(0)\right\|_{2}^{2}$
$+2 T C(1$
$\left.+\int_{0}^{t}\left\|u^{m}\right\|_{2}^{2} \ln \left\|u^{m}\right\|_{2}^{2} d s\right)$
If we put $C_{1}=\max \left\{2 T C, 2\left\|u^{m}(0)\right\|_{2}^{2}\right\}$,
leads

$$
\begin{aligned}
\left\|u^{m}\right\|_{2}^{2} \leq 2 C_{1} & (1 \\
& +\int_{0}^{t}\left(C_{1}\right. \\
& \left.\left.+\left\|u^{m}\right\|_{2}^{2}\right) \ln \left(C_{1}+\left\|u^{m}\right\|_{2}^{2}\right) d s\right)
\end{aligned}
$$

Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the following estimate

$$
\left\|u^{m}\right\|_{2}^{2} \leq 2 C_{1} e^{2 C_{1} T} \leq 2 C_{2}
$$

Hence, from the inequality (3.8) it follows that:

$$
\left\|u_{t}^{m}\right\|_{L^{2}(\Omega)}^{2}+\left\|\Delta u^{m}\right\|_{L^{2}(\Omega}^{2}+\left\|u^{m}\right\|_{L^{2}(\Omega}^{2} \leq C_{3}
$$

where C_{3} is a positive constant independent of m and t. This implies

$$
\begin{align*}
& \sup _{t \epsilon\left(0, t_{m}\right)}\left\|u_{t}^{m}\right\|_{L^{2}(\Omega)}^{2}+\sup _{t \in\left(0, t_{m}\right)}\left\|\Delta u^{m}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad+\sup _{t \in\left(0, t_{m}\right)}\left\|u^{m}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq C_{4} \tag{3.11}
\end{align*}
$$

So, the approximate solution is uniformly bounded independent of m and t. Therefore, we can extend t_{m} to T. Moreover, we obtain, from (3.11),
$\left\{u^{m}\right.$ is uniformly bounded in $L^{\infty}\left(0, T ; H_{0}^{m}(\Omega)\right.$
$\left\{u_{t}^{m}\right.$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right.$
which implies that there exists a subsequence of u^{m} (still denoted by u^{m}), such that
$\left\{\begin{array}{c}u^{m} \rightharpoonup u \text { weakly }^{*} \text { in } L^{\infty}\left(0, T ; H_{0}^{m}(\Omega)\right. \\ u_{t}^{m} \rightharpoonup u_{t} \text { weakly }{ }^{*} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right. \\ u^{m} \rightharpoonup u \text { wekaly in } L^{2}\left(0, T ; H_{0}^{m}(\Omega)\right. \\ u_{t}^{m} \rightharpoonup u_{t} \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right.\end{array}\right.$
Making use of Aubin -Lions' theorem, we find, up to a subsequence, that $\quad u^{m} \rightarrow u \quad$ strongly in $L^{2}\left(0, T ; L^{2}(\Omega)\right.$ and $u^{m} \rightarrow u \quad$ a.e in $\Omega \times(0, T)$.

Since the map $s \rightarrow s \ln |s|^{k} \quad$ is continuous, we have the convergence $u^{m} \ln \left|u^{m}\right|^{k} \rightarrow u \ln |u|^{k}$ in $\Omega \times(0, T)$

Using the embedding of $H_{0}^{m}(\Omega)$ in $L^{\infty}(\Omega)\left(\Omega \subset R^{2}\right)$, it is clear that $u^{m} \ln \left|u^{m}\right|^{k} \quad$ is bounded in $L^{\infty}(\Omega \times(0, T))$. Next, taking into account the Lebesgue bounded convergence theorem (Ω is bounded), we get converge strongly

$$
\begin{equation*}
u^{m} \ln \left|u^{m}\right|^{k} \rightarrow u \ln |u|^{k} \quad \text { in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{3.14}
\end{equation*}
$$

Next, we prove that $h\left(u_{t}^{m}\right)$ is bounded in $L^{2}\left(0, T ; L^{2}(\Omega)\right.$. For this purpose, we consider two cases:

Case 1. H is linear on $[0, \varepsilon]$. Then using (2.1) and Young' s inequality, we get

$$
\begin{align*}
& \int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x \leq c \int_{\Omega} u_{t}^{m} h\left(u_{t}^{m}\right) d x \\
& -\int_{\Omega}\left|u_{t}^{m}\right|^{2} d x \\
& \leq \frac{c}{4 \delta_{0}} \int_{\Omega}\left|u_{t}^{m}\right|^{2} d x \\
& +\delta_{0} \int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x \tag{3.15}
\end{align*}
$$

for a suitable choice of δ_{0}, and using the fact that u_{t}^{m} is bounded in $L^{2}\left((0, T), L^{2}(\Omega)\right)$, we obtain

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x d t \leq c \tag{3.16}
\end{equation*}
$$

Case 2. Let $0<\varepsilon_{1} \leq \varepsilon$ such that

$$
\begin{gather*}
\operatorname{sh}(s) \leq \\
\min \{\varepsilon, H(\varepsilon)\} \text { for all }|s| \leq \varepsilon_{1} \tag{3.17}\\
\left\{\begin{array}{l}
s^{2}+h^{2}(s) \leq H^{-1}(\operatorname{sh}(s)) \text { for all }|s| \leq \varepsilon_{1} \\
c_{1}^{\prime}|s| \leq|h(s)| \leq c_{2}^{\prime}|s| \quad \text { for all }|s| \geq \varepsilon_{1}
\end{array}\right. \tag{3.18}
\end{gather*}
$$

Define the following sets

$$
\begin{array}{r}
\Omega_{1}=\left\{x \in \Omega:\left|u_{t}^{m}\right| \leq\right. \\
\left.\varepsilon_{1}\right\}, \Omega_{2}=\left\{x \in \Omega:\left|u_{t}^{m}\right| \leq \varepsilon_{1}\right\}(3.19)
\end{array}
$$

Then, using (5.7) and (3.19) leads to

$$
\begin{aligned}
\int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x & = \\
& \leq c_{2}^{\prime} \int_{\Omega_{2}}\left|u_{t}^{m}\right|^{2} d x \\
& +\int_{\Omega_{1}}\left(\left|u^{m}\right|_{t}^{2}+h^{2}\left(u_{t}^{m}\right)\right) d x \\
& -\int_{\Omega_{1}}\left|u_{t}^{m}\right|^{2} d x \leq c_{2}^{\prime} \int_{\Omega_{2}}\left|u_{t}^{m}\right|^{2} d x+ \\
& \int_{\Omega_{1}} H^{-1}\left(u_{t}^{m} h\left(u_{t}^{m}\right)\right) d x
\end{aligned}
$$

Let

$$
J^{m}(t):=\int_{\Omega_{1}} u_{t}^{m} h\left(u_{t}^{m}\right) d x
$$

Using (3.20) and Jensen's inequality, we obtain

$$
\begin{align*}
& \int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x \leq c \int_{\Omega}\left|u_{t}^{m}\right|^{2} d x+H^{-1}(J(t)) \\
& =c \int_{\Omega}\left|u_{t}^{m}\right|^{2} d x \\
& +\frac{H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)}\right)}{H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)}\right)} H^{-1}(J(t)) \tag{3.21}
\end{align*}
$$

Using the convexity of $H\left(H^{\prime}\right.$ is increasing), we obtain for $t \in(0, T)$,

$$
H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)}\right) \geq H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(T)}{E^{m}(0)}\right)=c
$$

Let H^{*} be the convex conjugate of H in the sense of Young, then, for $s \in\left(0, H^{\prime}\left(r^{2}\right)\right]$

$$
\begin{align*}
& H^{*}(s)=s\left(H^{\prime}\right)^{-1}(s)-H\left[\left(H^{\prime}\right)^{-1}(s)\right] \\
& \leq s\left(H^{\prime}\right)^{-1}(s) \tag{3.22}
\end{align*}
$$

Using the general Young inequality $A B \leq$ $H^{*}(A)+H(B), \quad$ if $A \in\left(0, H^{\prime}\left(r^{2}\right)\right], \quad B \in$ ($0, r^{2}$]

For $A=H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)}\right)$ and $B=$ $H^{-1}\left(J^{m}(t)\right)$
and using the fact that $E^{m}(t) \leq E^{m}(0)$, we get

$$
\begin{align*}
\int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x & \leq c \varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)} H^{\prime}\left(\varepsilon_{0} \frac{E^{m}(t)}{E^{m}(0)}\right) \\
& -C\left(E^{m}\right)^{\prime}(t) \leq c \int_{\Omega}\left|u_{t}^{m}\right|^{2} d x+c \\
& \leq-C\left(E^{m}\right)^{\prime}(t) \tag{3.23}
\end{align*}
$$

Integrating (3.23) over $(0, T)$, we obtain

$$
\begin{align*}
& \quad \int_{0}^{T} \int_{\Omega} h^{2}\left(u_{t}^{m}\right) d x d t \leq c \int_{0}^{T}\left|u_{t}^{m}\right|^{2} d x d t+c T \\
& -C\left(E^{m}(T)\right. \\
& -E^{m}(0) \tag{3.24}
\end{align*}
$$

Using (3.5) and the fact that u_{t}^{m} is bounded in $L^{2}\left((0, T), L^{2}(\Omega)\right)$, we conclude that $h\left(u_{t}^{m}\right)$ is bounded in $L^{2}\left((0, T), L^{2}(\Omega)\right)$. So we find, up to a subsequence that.

$$
\begin{equation*}
h\left(u_{t}^{m}\right) \rightharpoonup \chi \text { in } L^{2}\left((0, T), L^{2}(\Omega)\right) \tag{3.25}
\end{equation*}
$$

Now, we integrate (3.4) over ($0, t$) to obtain
$\int_{\Omega} u_{t}^{m} w d x-\int_{\Omega} u_{1}^{m} w d x$
$+\int_{0}^{t} \int_{\Omega} \Delta u^{m}(s) \Delta \omega d x d s+\int_{0}^{t} \int_{\Omega} u^{m}(s) w d x d s$
$+\int_{\Omega} h\left(u_{t}^{m}\right) w d x d s$
$=\int_{\Omega} \int_{0}^{t} \omega u^{m}(s) \ln \left|u^{m}(s)\right|^{k} d x d s, \quad \forall \omega$
$\in V_{m}$ (3.26)
Convergences (3.3), (3.13), (3.14) and (3.25) are sufficient to pass the limit in (3.26) as $m \rightarrow \infty$, get
$\int_{\Omega} u_{t} w d x$
$=\int_{\Omega} u_{1} w d x$
$-\int_{0}^{t} \int_{\Omega} \Delta u(s) \Delta \omega d x d s-\int_{0}^{t} \int_{\Omega} u(s) \omega d x d s$
$-\int_{0}^{t} \int_{\Omega} \chi(s) \omega d x d s \int_{\Omega} \int_{0}^{t} u(s) \omega \ln |u(s)|^{k} d x$,
which implies that (3.27) is valid for any $w \in$ $H_{0}^{m}(\Omega)$. Using the fact that the terms in the righthand side of (3.27) are absolutely continuous since they are functions of t defined by integrals over $(0, t)$; hence, it is differentiable for a.e. $t \in R^{+}$. Thus, differentiating (3.27), we obtain for a.e. $t \in(0, T)$.
$\int_{\Omega} u_{t t}(x, t) w(x) d x+\int_{\Omega} \Delta u(x, t) \Delta w(x) d x$
$+\int_{\Omega} u(x, t) w(x) d x$
$+\int_{\Omega} \chi(t) w(x) d x$
$=\int_{\Omega} \omega(x) u(x, t) \ln |u(x, t)|^{k} d x$
On the other hand, since h is a no decreasing monotone function, one has
X^{m}
$:=\int_{0}^{T} \int_{\Omega}\left(u_{t}^{m}-v\right)\left(h\left(u_{t}^{m}\right)-h(v)\right) d x d t \geq 0, v$ $\in L^{2}\left(0, T ; L^{2}(\Omega)\right)$

Now, integrate (3.6) over $(0, t)$ and taking $m \rightarrow$ ∞, we obtain

$$
\begin{align*}
0 \leq \lim \sup X^{m} & \leq\left\|u_{1}\right\|_{2}^{2}+\left\|\Delta u_{0}\right\|_{2}^{2} \\
& +\left(\frac{k+2}{4}\right)\left\|u_{0}\right\|_{2}^{2} \\
& -\int_{\Omega}\left|u_{0}\right| \ln \left|u_{0}\right| d x \\
& -\left(\left\|u_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}\right. \\
& +\left(\frac{k+2}{4}\right)\|u\|_{2}^{2} \\
& \left.-\int_{\Omega}|u| \ln |u| d x\right) \\
& -\int_{0}^{t} \int_{\Omega} \chi(t) v d x d s \\
& -\int_{0}^{t} \int_{\Omega}\left(u_{t}\right. \\
& -v) h(v) d x d s \tag{3.30}
\end{align*}
$$

Replacing w by u_{t} in (3.28) and integrating over $(0, T)$, to obtain
$\lim \sup X^{m} \leq\left\|u_{1}\right\|_{2}^{2}+\left\|\Delta u_{0}\right\|_{2}^{2}+\left(\frac{k+2}{4}\right)\left\|u_{0}\right\|_{2}^{2}$ $-\int_{\Omega}\left|u_{0}\right| \ln \left|u_{0}\right| d x$
$-\left(\left\|u_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}+\left(\frac{k+2}{4}\right)\|u\|_{2}^{2}\right.$
$\left.-\int_{\Omega}|u| \ln |u| d x\right)$
$-\int_{0}^{t} \int_{\Omega} \chi(t) v d x d s$
Combining (3.30) with (3.31)
$0 \leq \lim \sup X^{m}$

$$
\begin{align*}
& \leq \int_{0}^{t} \int_{\Omega} \chi(t) u_{t} d x d s \\
& -\int_{0}^{t} \int_{\Omega} \chi(t) v d x d s \\
& \quad-\int_{0}^{t} \int_{\Omega} h(v)\left(u_{t}-v\right) v d x d s \\
\leq & \int_{0}^{t} \int_{\Omega}(\chi(t)-h(v))\left(u_{t}\right. \\
- & v) d x d s \tag{3.32}
\end{align*}
$$

Hence,
Let $v=\lambda \psi+u_{t}, \psi \in L^{2}\left((0, T), L^{2}(\Omega)\right)$. So, we get,

$$
\begin{gathered}
-\lambda \int_{0}^{t} \int_{\Omega}\left(\chi(t)-h\left(\lambda \psi+u_{t}\right)\right) \psi d x d s \\
\leq 0, \quad \forall \psi \\
\end{gathered}
$$

$$
\int_{0}^{t} \int_{\Omega}\left(\chi(t)-h\left(\lambda \psi+u_{t}\right)\right) \psi d x d s \leq
$$

$0, \quad \forall \psi \in L^{2}\left((0, T), L^{2}(\Omega)\right)$. As
$\lambda \rightarrow 0$, we have
$\int_{0}^{t} \int_{\Omega}\left(\chi(t)-h\left(u_{t}\right)\right) \psi d x d s \leq 0, \quad \forall \psi$ $\in L^{2}\left((0, T), L^{2}(\Omega)\right)$.

Similarly, for $\lambda<0$, we get
$\int_{0}^{t} \int_{\Omega}\left(\chi(t)-h\left(u_{t}\right)\right) \psi d x d s \geq 0, \quad \forall \psi$ $\in L^{2}\left((0, T), L^{2}(\Omega)\right)$.

Thus, (3.31) and (3.33) imply that $\chi=h\left(u_{t}\right)$.
Hence (3.28) becomes

$$
\begin{aligned}
& \int_{\Omega} u_{t t}(x, t) \omega(x) d x+\int_{\Omega} \Delta u(x, t) \Delta \omega(x) d x \\
& +\int_{\Omega} u(x, t) \omega(x) d x \\
& +\int_{\Omega} h\left(u_{t}\right) \omega(x) d x \\
& =\int_{\Omega} w(x) u(x, t) \ln |u(x, t)|^{k} d x, \forall \omega \\
& \in H_{0}^{m}(\Omega) \\
& u^{m} \rightharpoonup u \text { wekaly in } L^{2}\left(0, T ; H_{0}^{m}(\Omega)\right) \\
& u_{t}^{m} \rightharpoonup u_{t} \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \\
& (3.36)
\end{aligned}
$$

Thus, using Lion's Lemma [30], we obtain

$$
\begin{equation*}
u^{m} \rightarrow u \quad \text { in } C\left([0, T], L^{2}(\Omega)\right) \tag{3.37}
\end{equation*}
$$

Therefore, $u^{m}(x, 0)$ makes sense and $u^{m}(x, 0) \rightarrow u(x, 0)$ in $L^{2}(\Omega)$

Also, we have
$u^{m}(x, 0)=u_{0}^{m}(x) \rightarrow u_{0}(x)$ in $H_{0}^{m}(\Omega)$
Hence,

$$
u(x, 0)=
$$

$u_{0}(x)$
Now, multiply (3.4) by $\emptyset \in C_{0}^{\infty}(0, T)$ and integrate over $(0, T)$, we obtain for any $\omega \in V_{m}$

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} u_{t}^{m}(t) \omega \emptyset^{\prime}(t) d x d t \\
& =-\int_{0}^{T} \int_{\Omega} \Delta u^{m}(t) \Delta \omega \emptyset(t) d x d t \\
& -\int_{0}^{T} \int_{\Omega} u^{m} \omega \emptyset(t) d x d t-\int_{0}^{T} \int_{\Omega} u_{t}^{m} \omega \emptyset(t) d x d t \\
& +\int_{0}^{T} \int_{\Omega} w u_{m} \ln \left|u_{m}\right|^{k} \emptyset(t) d x d t \tag{3.38}
\end{align*}
$$

As $m \rightarrow \infty$, we have for any $\omega \in H_{0}^{m}(\Omega)$ and any $\emptyset \in C_{0}^{\infty}(0, T)$

$$
\begin{aligned}
-\int_{0}^{T} \int_{\Omega} u_{t}(t) & w \varnothing^{\prime}(t) d x d t \\
& =-\int_{0}^{T} \int_{\Omega} \Delta u(t) \Delta \omega \emptyset(t) d x d t
\end{aligned}
$$

$-\int_{0}^{T} \int_{\Omega} u \omega \emptyset(t) d x d t$
$-\int_{0}^{T} \int_{\Omega} u_{t} \omega \varnothing(t) d x d t$
$+-\int_{0}^{T} \int_{\Omega} \omega \varnothing(t) u \ln |u|^{k} d x d t$
This means (see [32])

$$
u_{t t} \in L^{2}\left([0, T), H^{-m}(\Omega)\right)
$$

Recalling that $u_{t} \in L^{2}\left(0, T ; H_{0}^{m}(\Omega)\right)$, we obtain

$$
u_{t} \in C([0, T),) H^{-m}(\Omega)
$$

So, $u_{t}^{m}(x, 0)$ makes sense and

$$
u_{t}^{m}(x, 0) \rightarrow u_{t}(x, 0) \text { in } H^{-m}(\Omega)
$$

But

$$
u_{t}^{m}(x, 0)=u_{1}^{m}(x) \rightarrow u_{1}(x) \text { in } L^{2}(\Omega)
$$

Hence, $\quad u_{t}(x, 0)=u_{1}(x)$.

References

[1] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. SpringerVerlag, 1979.
[2] L. Fraccarollo, H. Capart, and Y. Zech. A Godunov method for the computation of erosional shallow water transients.International Journal for Numerical Methods in Fluids, 41:951-966, 2003.
[3] A.F. Bennett and B.S. Chua. Open boundary conditions for Lagrangian geophysical fluid dynamics. Journal of Computational Physics, 153:418-426, 1999.
[4] Broer, L.J.F.1975. Approximate equations for long wave equations.Appl. Sci. Res.31(5), 377-395.
[5] Broer, L.J.F., van Groesen, E.W.C. \& Timmers, J.M.W.1976. Stable model equations for long water waves. Appl. Sci. Res. 32 (6), 619-636.
[6] Broer, L.J.F. 1974. On the Hamiltonian theory of surface waves. Appl. Sci. Res. 29, 430-446.Broer, L.J.F.
[7] Dommermuth, D.G. \& Yue, D.K.P.1987. A high-order spectral method for the study of nonlinear gravity waves.J. Fluid Mech.184, 267-288.
[8] Cazenave T. and Haraux A., Equations d'evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse Math. 2(1), 21-51 (1980).
[9] Hiramatsu T., Kawasaki M., and Takahashi F., Numerical study of Q-ball formation in gravitymediation, Journal of Cosmology and Astroparticle Physics, no. 6, 008 (2010).
[10] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear and source term, J. Differential Equations, 109, 295-308 (1994).
[11] Gorka P., Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40(1), 59-66 (2009).
[12] Gorka P. , Prado H., and Reyes E. G., Nonlinear equations with infinitely many derivatives, Complex Anal.Oper. Theory5, no. 1, 313-323(2 011)
[13] Chen H., Luo P. and Liu G.W., Global solution and blow-up of a semilinear heat equation withlogarithmic nonlinearity, J. Math. Anal. Appl. 422, 84-98 (2015).
[14] Gross L. Logarithmic Sobolev inequalities, Amer. J. Math. 97(4), 1061-1083 (1975)

