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Abstract: 

We consider the classical numerical-type of models.  In the first part we deal with finite difference 

numerical model for irotational water waves. Finite volume methods are based on the integral form. A 

numerical model for solving the two-dimensional equations is presented. The standard Galerkin method 

with mixed interpolation is applied. In the second part we consider the water wave equation with a 

logarithmic nonlinearity. Using the Galerkin method, we establish the existence of solutions of the 

problem. 
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Introduction 

We deal with water wave equation. We want to 

obtain a model for non-linear equations.   In the 

first part using the fully non-linear model for 

irrotational water waves in the form (see [1], [2]) 

given as 

 

                

           ∬                                         
 

we consider the finite volume method. Finite 

volume methods are based on the integral form of 

the conservation law 
 

 

  
∫                                  
  

  

                                                 
Dingemans (1997) describes several methods with 

positive-definite Hamiltonian, but these methods 

are quite tedious and have certain ambiguities 

regarding the order of certain operators, (see [3], 

[4]). The present method leads to a positive-

definite Hamiltonian and can be fully non-linear if 

desired. The present model is an additional elliptic 

equation in the horizontal plane has to be solved 

(see [6]). High-order non-linear models solve free-

surface evolution equations derived from a 

Hamiltonian under the constraint that the Laplace 

equation is satisfied exactly in the interior of the 

fluid domain (see [7] ).   

In the second part we deal with the existence and 

decay of solutions of the following problem 

 

                      | |                               
                                     

with boundary conditions 

 

       
  

  
                           

             ;                               
 

where       ,      is a bounded domain with 

smooth boundary          and             
     , ν  is the unit outer normal to    and k  

is a positive real number. This type of problems 

has applications in many branches of physics such 

as nuclear physics, optics and geophysics [5,6,11]. 

In [8], Cazenave and Haraux considered  

 

                      

            | |
                                             

 

M. Al-Gharabli And S. A. Messaoudi J. Evol. 

Equ. and established the existence and uniqueness 

of the solution for the Cauchy problem. Hiramatsu 

et al. [9] introduced the following equation 

 

                 | |          | |    (1.5) 

 

to study the dynamics, Q-ball in theoretical 

physics. 
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1. Finite difference numerical model for 

irrotational water waves 

Fully non-linear model for irrotational water 

waves in the form (see [1], [2]) given as  

 

                

           ∬                                     
 

where the Lagrangian density is   

 

                         
 

                                     
 

where        is the surface elevation,          is 

the velocity potential. Than the energy density 

                  is given by the sum of kinetic 

and potential energy densities as follows  

  ∫
 

 

 

  

      
       

      
 

 
     

 

while the mass density ρ is taken to be constant 

and equal to one. Further      is the still-water 

depth and   is the gravitational acceleration.  

Note that the Hamiltonian  ̅            itself is 

the partial integral of    
 

                       ̅  ∫                                                                   
 

Let we see the potential φ(x, z, t), corresponding 

with a parabolic behaviour over depth with     = 

0 at the bed and       at the free surface: 

 

                                       
 

                 
 

 
         

          

     
            (1.8) 

 
We want time derivatives of         and        
to appear in the Euler-Lagrange equations. Note 

that for a horizontal bottom we have        at 

       The velocity components become: 

 

         
 

 
 (   

       

     
  +     

                                                                      
(1.9) 

 

                
       

     
    Note that        is the 

vertical velocity       at             
 

Energy density   is:  

 

    
 

 
        *    

 

 
     

 

 
   

       +
 

 
 

  
                 

        
   

 

 
          

 

 
                          

(1.10) 

 

We take variations of    with respect to     and   

we get from        and introduce           
and note that the discharge        and depth-

averaged velocity        are:              , 

and  

 

               
 

 
       

 

 
                (1.11) 

 

Step by step following all actions we have to solve 

two time-evolution equations for        and u(x, 

t), as well as an elliptic equation for          For 

full steps we can [4]. Then the system of 

equations to be solved can be written as: 

 

                            
Finally,  

         *
 

 
 

 

  
      

 +
 

  *
 

 
         

 

 
           +         *

 

 
         

 

 
                     

 

  
           +      

                          (1.12) 

 

2. Preliminaries  

In this section we deal with the existence of 

solutions of the following problem for the water 

wave equation with logarithmic term. 

 

                      | |             (2.1)  

 

with boundary conditions  

 

       
  

  
                           

             ;                               
 

where      ,      is a bounded domain with 

smooth boundary          and             

     , ν  is the unit outer normal to    and k  

is a positive real number, x          . 

Definition 2.1.( weak solution of eq.  (2.1) ) 

 

A continuous function          is a global 

weak solution to the Cauchy problem (1.2)  if: 
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and  ‖ ‖       ‖  ‖            ∀            

satisfies equation (1-2) in the sense of 

distributions. 

Lemma 2.2..Logarithmic Sobolev inequality  

(see [13,14]). Let   be any function in    
      

and       be any number.  Then   

 ∫| |   | |

 

   
 

 
 ‖ ‖   ‖ ‖   

                
   

  
 ‖  ‖         ‖ ‖           (2.2) 

 

Lemma 2.3. Logarithmic Gronwall inequality  

(see [8]). Let       and               Let 

  be any function                  satisfies 

 

       ∫     
 

 
              , 0     

 

then               ∫     
 

 
    ,  0         

(2.3) 

 

Lemma 2.4. The Cautchy – Schwartz inequlity  

Recall: For the Hilbert space with a norm        

and its resulted norm ‖     ‖  √     , than the 

Cauchy-Schwartz inequality is the following, 

|         |  ‖ ‖‖ ‖  

 

3. Galerkin method for existence of solutions 

We use the standard Faedo–Galerkin method for 

the existence of solutions for the water wave 

equation with logarithmic term (2.1). 

Theorem 3.1 

Let            
            . Then, problem 

of equations (2.1) has a global week solution as 

                 

  
                                  )  

Proof:  To proof the theorem we consider the 

standard Faedo-Galerkin method. We take an 

orthogonal basis of the space   
     in the form 

{  }   
 

. This is othonormal in       . Let 

       {            } and let the 

projections of the initial data on the subspace    

be given by  

  
     ∑     

 
        ,     

     

∑        
 
    

where    
            

            
  

                                                

We search for an approximate solution   

        ∑   
         

 
    of the approximate 

problem in                                                                                                                                                             

{

∫     
                 

       ∫      |  |          

        
  ∑        

 
                                                                                                   

  
       

 ∑        
 
                                                                                                     

            

This leads to a system of ODEs  for unknown 

functions   
    . Based on standard excistence 

theory for ODE, one can obtain functions: 

                        

which satisfy (3,4) in a maximal interval 

                . Next we show that      

and that the local solution is uniformly bounded 

independent of    and    For this purpose, let 

ѡ=  
   in (3,4) and integrate by  parts to obtain 

   
 

  
       ∫   

   
 

  
    

                          

where,  

     

 
 

 
(‖  

 ‖ 
  ‖   ‖ 

  (
   

 
) ‖  ‖ 

 

 ∫ |  |   |  |     
 

)                                          

The last inequality together with the Logarithmic 

Sobolev inequality leads to 

                         ‖  
 ‖ 

  (  
     

  
)‖   ‖ 

 

 [(
   

 
)         ] ‖  ‖ 

  

   ‖  
 ‖ 

   ‖  ‖ 
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Choossing   ( 
 

 
 
 

  
)     √

  

   
    will make   

  
     

  
      and   (

   

 
)             

This selection is possible thanks to (A2). So, we 

get 

        ‖  
 ‖ 

  ‖   ‖ 
  ‖  ‖ 

        

‖  ‖ 
   ‖  ‖ 

                                                         

Note                  ∫
   

  
       

 

 
 

Then, using Cauchy-Schwarz’ inequality, we get 

‖     ‖ 
   ‖     ‖ 

 

  ‖∫
   

  
      

 

 

‖
 

 

     

  ‖     ‖ 
 

   ∫ ‖  
    ‖ 

   
 

 

                  

‖     ‖ 
 

  ‖     ‖ 
 

    ( 

 ∫ ‖  ‖ 
   ‖  ‖ 

   
 

 

)                       

If we put       {     ‖ 
    ‖ 

 }     (3.10) 

leads  

‖  ‖ 
     ( 

 ∫    

 

 

 ‖  ‖ 
          ‖ 

 ‖ 
    ) 

Applying the Logarithmic Gronwall inequality to 

the last inequality, we obtain the following 

estimate 

‖  ‖ 
      

         

Hence, from the inequality (3.8) it follows that: 

‖  
 ‖

     
  ‖   ‖    

  ‖  ‖    
     

where       is a positive constant independent of 

   and   .  This implies 

   
        

‖  
 ‖

     
     

        
‖   ‖     

 

    
        

‖  ‖     
 

                                                 

So, the approximate solution is uniformly 

bounded independent of     and     Therefore, we 

can extend     to  .  Moreover, we obtain, from 

(3.11), 

                                                  

{
                                      

    

  
                                        

                                         

(3.12) 

which implies that there exists a subsequence of  

    (still denoted by   ), such that                                              

{
 
 

 
                                  

      

  
                

                   

                               
    

  
                     

                           

                                                    

Making use of Aubin –Lions’ theorem, we find, 

up to a subsequence, that            strongly in 

              and          a.e  in Ω × (0,T ). 

Since the map      | |     is continuous, we 

have the convergence       |  |     | | in 

Ω × (0,T )                          

Using the embedding of     
      in  

               it is clear that     |  |     is 

bounded in    (Ω × (0,T )).  Next, taking into 

account the Lebesgue bounded convergence 

theorem (Ω is bounded),  we get converge 

strongly 

     |  |     | | in   (          )        

(3.14) 

Next, we prove that     
    is bounded in 

             . For this purpose, we consider two 

cases: 

Case 1.    is linear on      . Then using (2.1) and 

Young’ s inequality, we get  
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∫      
      

 

∫   
     

    
 

 ∫ |  
 |   

 

 
 

   
∫ |  

 |   
 

   ∫      
                           

 

 

for a suitable choice of    , and using the fact that 

  
   is bounded in   (           ), we obtain   

   ∫ ∫      
         

 

           
 

 

 

Case 2.  Let          such that    

      

   {      }         | |                                                                                      

{
            (     )          | |    
  
 | |  |    |    

 | |                 | |    
                                                

(3.18) 

Define  the following sets 

                                                {    |  
 |  

   }    {    |  
 |    }            

Then, using (5.7) and (3.19) leads to 

∫      
     

 

 

   
 ∫ |  

 |    
  

 ∫ (|  | 
        

  )  
  

 ∫ |  
 |   

  

   
 ∫ |  

 |    
  

 

                                     ∫        
     

     
  

                     

                             ∫   
     

    
  

 

Using (3.20) and Jensen’s inequality, we obtain 

  

∫      
      

 

∫ |  
 |    

 

   (    )

  ∫ |  
 |   

 

 
  (  

     
     

)

  (  
     
     

)
   (    )                                

Using the convexity of      is increasing), we 

obtain for          

  (  
     

     
)    (  

     

     
)    

Let     be the convex conjugate of    in the sense 

of Young , then, for              

                             

                                                                            

Using the general Young inequality     

                                                  

       

For        (  
     

     
)               

   (     ) 

and using the fact that                ,   we get 

∫      
      

 

    
     

     
  (  

     

     
)

            ∫ |  
 |    

 

 

                                         

Integrating (3.23) over      ,  we obtain 

∫ ∫      
        

 

  
 

 

∫ |  
 |        

 

 

        

                                                         

Using (3.5) and the fact that   
  is bounded in 

  (           ) ,  we conclude that     
   is 

bounded in   (           ). So we find, up to a 

subsequence that. 



1
L. Bezati, IJSRM Volume 06 Issue 02 February 2018 [www.ijsrm.in]                                      M-2018-22 

       
            (           )                                                            

Now, we integrate (3.4) over        to obtain 

∫   
     

 

∫   
    

 

 ∫ ∫              
 

 

 

∫ ∫           
 

 

 

 ∫     
       

 

 ∫ ∫         |     |         ∀ 
 

  

           

Convergences (3.3), (3.13), (3.14) and (3.25) are 

sufficient to pass the limit in (3.26) as    , get 

∫      
 

 ∫      
 

 ∫ ∫             ∫ ∫          
 

 

  

 

 

 

 ∫ ∫          
 

 

 

∫ ∫        |    |       
 

  

        

which implies that (3.27) is valid for any ѡ 

  
    .  Using the fact that the terms in the right-

hand side of (3.27) are absolutely continuous 

since they are functions  of    defined by integrals 

over      ; hence, it is differentiable for a.e.  

    .  Thus, differentiating (3.27), we obtain for 

a.e.        . 

∫                
 

∫               
 

 ∫             
 

 ∫            
 

 ∫             |      |                                       
 

  

On the other hand, since   is a no decreasing 

monotone function, one has 

  

 ∫ ∫    
    (    

       )       
 

 

 

   

   (          )                                                                

Now, integrate (3.6) over       and taking   

 , we obtain 

 

            ‖  ‖ 
  ‖   ‖ 

 

 (
   

 
) ‖  ‖ 

 

 ∫ |  |   |  |  
 

 (‖  ‖ 
  ‖  ‖ 

 

 (
   

 
) ‖ ‖ 

 

 ∫ | |   | |  
 

)

 ∫ ∫          
 

 

 

 ∫ ∫    
 

 

 

                                          

Replacing ѡ by    in (3.28) and integrating over 

       to obtain 

          ‖  ‖ 
  ‖   ‖ 

  (
   

 
) ‖  ‖ 

 

 ∫ |  |   |  |   
 

 (‖  ‖ 
  ‖  ‖ 

  (
   

 
) ‖ ‖ 

 

 ∫ | |   | |  
 

)

 ∫ ∫                                                        
 

 

 

 

Combining (3.30) with (3.31)  
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 ∫ ∫           
 

 

 

 ∫ ∫                        
 

 

 

     

 ∫ ∫                 
 

 

 

 ∫ ∫ (         )   
 

 

 

                                            

Hence, 

Let        ,    
 (           ). So, we 

get ,  

  ∫ ∫ (             )     
 

 

 

           ∀ 

    (           )         

       ∫ ∫ (             )       

 

 

          ∀     (           )                   As 

   ,  we have 

∫ ∫ (          )                ∀ 
 

 

 

    (           )                                                            

Similarly, for     , we get 

∫ ∫ (          )                ∀ 
 

 

 

    (           )                                                             

Thus, (3.31) and (3.33) imply that          

Hence (3.28) becomes 

∫                
 

∫               
 

 ∫             
 

 

 ∫            
 

 ∫             |      |   
 

  ∀ 

   
                                                                              

                               
      

  
                     

                          

(3.36)                                                    

Thus, using Lion’ s Lemma     , we obtain  

                                                      

(3.37) 

Therefore,          makes sense and  

                          

Also, we have                                        

          
                 

     

Hence,                                                           

        

Now, multiply (3.4) by     
        and 

integrate over      , we obtain for any      

 ∫ ∫   
               

 

 

 

  ∫ ∫                 
 

 

 

 

 ∫ ∫            
 

 

 

 ∫ ∫   
           

 

 

 

 ∫ ∫      |  |
                      

 

 

 

 

As    , we have for any     
      and any  

    
       

 ∫ ∫        
         

 

 

 

  ∫ ∫                
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        ∫ ∫           
 

 

 

 ∫ ∫             
 

 

 

  ∫ ∫         | |                                    
 

 

 

 

This means (see     ) 

     
                

Recalling that     
         

     , we obtain  

             
      

So,   
       makes sense and 

  
                     

      

But  

  
         

                 
     

Hence,                         
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