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Abstract 

The aim of this paper is to introduce tools from bifurcation theory is necessary in ways in our life 

particularly in the study of neural field equations set in the primary visual cortex. So we deal with saddle-

node, trans- critical, pitchfork and Hopf. Bifurcations as an elementary bifurcation; directly related to the 

center manifold theory which is a canonical way to write differential equations. 

We conclude this paper with an overview of bifurcations with symmetry by solving some problems and 

giving Branching Lemma as the equivariant result 
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1. Elementary bifurcation 

Definition 1.1. In dynamical systems, a bifurcation occurs when a small smooth change made to the 

parameter values (the bifurcation parameters) of a system causes a sudden qualitative" or topological change 

in its behavior. Generally, at a bifurcation, the local stability properties of equilibrium, periodic orbits or 

other invariant sets changes. 

1.1.1 Bifurcation of dimension 1: 

     Let us  consider scalar differential equations of the form 
du

dt
= f(u, μ)              (1.1.1)  

Here the unknown u is a real-valued function of the time t, and the vector field f is real- valued depending, 

besides u, upon a parameter μ. The parameter μ is the bifurcation parameter. We suppose that equation 

(1.1.1) is well-defined and satisfies the hypotheses of the Cauchy-Lipschitz theorem, such that for each 

initial condition there exists a unique solution of equation (1.1.1). Furthermore we assume that the vector 

field is of class Ck, k ≥ 2, in a neighborhood of (0, 0) satisfying: 

f(0,0) = 0,
∂f

∂u
(0,0) = 0. 

The first condition shows that u = 0 is an equilibrium of equation (1.1.1) at μ = 0. We are interested in local 

bifurcations that occur in the neighborhood of this equilibrium, when we vary the parameter μ. The second 

condition is a necessary, but not sufficient, condition for the appearance of local bifurcations atμ= 0. 

 

Remark 1.1. Suppose that the second condition is not satisfied: 

∂f/ ∂u(0,0) ≠ 0.  

A direct application of the implicit function theorem shows that the equation f(u, μ) = 0 

possesses a unique solution u = u(μ) in a neighborhood of 0, for small enough μ. In particular u = 0 is the 

only equilibrium of equation (1.1.1) in a neighborhood of 0 when  μ= 0,  and the same property holds for μ 

small enough. Furthermore, the dynamics of (1.1.1) in a neighborhood of 0 is qualitatively the same for all 

sufficiently small values of the parameter μ , no bifurcation occurs for small values of μ. 

 

1.1.1 Saddle-node bifurcation 
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This is a fixed point which is an attractor from both sides in one pair of directions and an expeller on both 

sides of the other. Here is the phase diagram for a saddle point in a two-dimensional system. The ‘stable 

manifold’ is simultaneously the watershed of expeller and also the only line of attraction for the fixed point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And let we state the following theorem which declares the fixed point in figure.  For  f(u, μ) = aμ + bu2 +
o(|μ| + u2) as (u, μ) → (0,0) 

Theorem 1.1 (Saddle-node bifurcation). Assume that the vector field f is of class Ck, k ≥ 2, in a 

neighborhood of (0, 0) and satisfies. 
∂f

∂μ
(0,0) = 0, a ≠ 0       (1.1.2) 

𝜕2𝑓

𝜕μ2
(0,0) = 0,2𝑏 ≠ 0  (1.1.3) 

The following properties hold in neighborhood of 0 in R for small enoughμ. 

(i) if ab < 0(𝑟𝑒𝑠𝑝. 𝑎𝑏 > 0) the differential equation has no equilibrium for μ < 0 (resp.for μ > 0), 

(ii) if ab<0 (resp. ab > 0) the differential equation possesses two equilibriumsu ± (∈), ∈= √|μ| for  μ >

0 (𝑟𝑒𝑠𝑝. 𝜇 < 0), with opposite stabilities. Furthermore, the map ∈→ u ± (∈)is of class Ck−2 in a 

neighborhood of 0 in R, and u ± (∈) = O(∈). 

    Then for equation (1.1.1), a saddle-node bifurcation occurs at μ= 0. 

A direct consequence of conditions (1.1.3) is that f has the expansion: 

f(u, μ) = aμ + bu2 + o(|μ| + u2) as (u, μ) → (0,0) 

Application: 1.1. Consider the truncated equation 
du

dt
= aμ + bu2 

Plot bifurcation diagrams in the (u, μ)-plane of this truncated equation for different values of a and b. 

Proof. Since a≠ 0, we apply the implicit function theorem which implies the existence of unique solution μ 

= g(u) for u close to 0 of the equation f(u, μ) = 0, where g is of class  Ck, k ≥ 2 in a neighborhood of the 

origin with g(0) = 0. Its Taylor expansion is given by 

μ = −
b

a
u2 + o(u2) 

Consequently, if abμ> 0 equation (1.1.1) has no equilibriums, one equilibrium u = 0 if  μ = 0 and a pair of 

equilibria  

u ± (μ) = ±√−aμ/b + o(√|μ|) if abμ < 0. 

Finally, in the case abμ< 0, we have: 
∂f

∂u
(u ± (μ), μ) = 2bu ± o(√|μ|) 

then the equilibrium u − (μ) is attractive, asymptotically stable when  
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b > 0 and repelling,  unstable when b < 0,where's, the equilibrium u + (μ) has opposite stability properties. 

 

1.1.2 Pitchfork bifurcation 

Theorem 1.2 (Pitchfork bifurcation). Assume that the vector field f is of class Ck, k ≥ 3, in a neighborhood 

of (0,0), that it is satisfies conditions (1.1.2), and that it is odd with respect to u: 

f(−u, μ) = −f(u, μ) 

Furthermore assume that: 

∂2f

∂μ ∂u
(0,0) = 0 , a ≠ 0,

∂3f

∂u3
(0,0) = 0 , 6b ≠ 0 

The following properties hold in neighborhood of 0 in R for small enough  

(i) if ab < 0(𝑟𝑒𝑠𝑝. 𝑎𝑏 > 0 ) the differential equation has one trivial equilibrium u = 0 

for μ< 0 (resp. for μ> 0). This equilibrium is stable when b < 0 and unstable when b > 0. 

(ii) if ab< 0 (resp. ab> 0) the differential equation possesses the trivial equilibrium u = 0 and two nontrivial 

equilibriums 

u ± (∈), ∈= √|μ|for μ > 0(resp. μ < 0), 
which are symmetric, u + (∈) = −u − (∈). The map 

∈→ u ± (∈)is of class Ck−3 

 In a neighborhood of 0 in R, and u ± (∈) = O(∈). The nontrivial equilibriums are stable when b < 0 and 

unstable when b > 0, whereas the trivial equilibrium has opposite stability .Then for equation (1.1.1), a 

pitchfork bifurcation occurs at μ = 0. 

 

Center Manifold Theory: 

Theorem (Local Center Manifold Theorem)Let f ∈ Cr(E), where E is an open subset of Rn containing the 

origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has c eigenvalues with zero real part, and s = n − c 

eigenvalues with negative real part. The system (1) then can be written in diagonal form 

ẋ = Cx + F(x, y) 

ẏ = Py + G(x, y)    (4) 

where (x, y) ∈ Rc × Rs, C is a square matrix with c eigenvalues with zero real parts, P is a square matrix with 

s eigenvalues with negative real parts, and F(0) = G(0) = 0, DF(0) = DG(0) = 0; furthermore, there 

exists a δ > 0 and a function h ∈ Cr(Nδδ(0)), h(0) = 0, Dh(0) = 0 the defines the local center manifold 

Wc(0) ≔ {(x, y) ∈ Rc × Rs|y = h(x)for |x| < 𝛿}and satisfies  

Dh(x)[Cx + F(x, h(x))] = Ph(x) + G(x, h(x))         (5) 

for |x| < 𝛿  , and the flow on the center manifold Wc(0)is defined by the system of differential equations 

ẋ = Cx + F(x, h(x))                                     (6) 

for all x ∈ Rc with |x| < 𝛿. 
This theorem can be used to determine the flow near non-hyperbolic equilibrium points. The strategy is: 

1. Convert (1) in diagonal form (4) 

2. Use a series expansion for the components of h(x) (up to the degree of accuracy we need, provided 

that r is sufficiently large) 

3. Determine the components of the expansion of h(x) using (5) 

4. Substitute this approximate expression of h(x) into (6) to determine the flow. 

 

Applications 

(1) From the above theorem to determine the qualitative behavior of the origin for the system 

ẋ = xy 

ẏ = −y − x2 
 

Solution(1)The system is already in the desired form, with C = 0, P = −1, F(x, y) = xy and G(x, y = −x2. 
Let 

h(x) = ax2 + bx3 + ⋯ 

Dh(x) = 2ax + 3bx2 + ⋯ 

Dh(x)[Cx + F(x, h(x))] = (2ax + 3bx2 + ⋯ )x(ax2 + bx3 + ⋯ ) 
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Ph(x) + G(x, h(x)) = −(ax2 + bx3 + ⋯ ) − x2 

↓↓ Collecting terms (Using(5)) 

O(x2) ∶  −a − 1 = 0 

O(x3) ∶ b = 0 

⋮ 
So h(x) = −x2 + O(x4). The flow on the center manifold is given by (6) 

ẋ = F(x, h(x)) = −x3 + O(x5) 

i.e., the system is stable. 

 

(2): From the theorem of central manifold to determine the qualitative behavior of the origin for 

the system 

ẋ1 = −x2 + x1y 

ẋ2 = x1 + x2y 

ẏ = −y − x1
2 − x2

2 + y2 

 

Solution(2):The system is already in the desired form, with 

C = [
0 −1
1 0

], P = −1, 

 F(x, y) = [
x1y
x2y] and G(x, y) = −x1

2 − x2
2 + y2. Let 

h(x1, x2) = ax1
2 + bx1x2 + cx2

2 + ⋯ 

Dh(x) = [2ax1 + bx2 + ⋯ , bx1 + 2cx2 ⋯ ] 

Dh(x)[Cx + F(x, h(x))] = [2ax1 + bx2 + ⋯ ,    bx1 + 2cx2 ⋯ ] [
−x2 + x1(ax1

2 + bx1x2 + cx2
2 + ⋯ )

x1 + x2(ax1
2 + bx1x2 + cx2

2 + ⋯ )
] 

Ph(x) + G(x, h(x)) = −(2ax1
2 + bx1x2 + cx2

2 + ⋯ ) − x1
2 − x2

2 + (ax1
2 + bx1x2 + cx2

2 + ⋯ )2 

↓↓ Collecting terms (Using(5)) 

x1
2 ∶ b = −a − 1 

x2
2 ∶  −b = −c − 1 

x1x2 ∶  −2a + 2c = −b 

⋮ 
we get a = −1, b = 0, c = −1, and so h(x1, x2) = −x1

2 − x2
2 + O(|x|3). The flow on the center manifold is  

given by (6) 

ẋ1 = −x2 + x1(−x1
2 − x2

2 + O(|x|3)) = −x2 − x1
3 − x1x2

2 + O(|x|4) 

ẋ2 = x1 + x2(−x1
2 − x2

2 + O(|x|3)) = x1 − x2
3 − x1

2x2 + O(|x|4) 

 

Results: 

     The center manifold theorem allows us to determine the local behavior of the system by looking at the 

flow on a lower dimensional manifold, i.e., instead of working with an n-dimensional system, we can just 

deal with a c-dimensional one (i.e., we "reduce" the full n-dimensional system into a c-dimensional system). 

In this example, instead of trying to determine the behavior of the full 3-d system, we reduced the problem 

to determine the behavior of the 2-d system above. 

To determine the stability of the origin, let's try changing to polar coordinates 

rṙ = x1ẋ1 + x2ẋ2 

= x1(−x2 − x1
3 − x1x2

2) + x2(x1 − x2
3 − x1

2x2) + O(|r|5) 

 = −x1
4 − 2x1

2x2
2 − x2

4 + O(|x|5) = −(x1
2 + x2

2)2 + O(|r|5) 

= −r4 + O(|r|5) 

ṙ = −r3 + O(|x|4) 

i.e., the system is stable. 

 

 

Applications: 

(3) Determine a center manifold for the rest point at the origin of the system 

ẋ = −xy 
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ẏ = −y + x2 − 2 y2 
a) Determine a center manifold for the rest point at the origin of the system and a differential equation for 

the dynamics on this center manifold. 

b) Show that every solution of the system is attracted to the center manifold. 

c) Determine the stability type of the rest point at the origin. 

Solution(3) 

             Progress so far: By the Invariant manifold theorem (IMT) we look for an invariant manifold as a 

graph of a function of the form, 

y = h(x) = a0 + a1x + αx2 + βx3 + γx4 + δx5 + θx6 + O(x7) 

By IMT we get that the constant term and the x term to be zero. By invariance we need to have thatẏ =
h′(x)ẋ. After some tedious computations and comparing coefficients of x of both sides we get,  

h(x) = x2 − 4x4 + 16x6 − 64x8 + ⋯ 

Thus we can conclude that (using properties of geometric series) 

h(x) =
x2

1 + 2x2
 

for x near zero. This is the required center manifold. A differential equation for the dynamics of the center 

manifold isẋ = −xh(x)with h(x)as above. 

We answer part (c)  

ẋ = −x(x2 − 4x4 + 16x6 − 64x8 + ⋯ ) = −x3 + O(x5) 

and since the coefficient of x3 is negative it follows that the origin is an asymptotically stable rest point for 

the center manifold and hence for the original system. 

 

(4): As the above theorem to determine the qualitative behavior of the origin for the system 

ẋ = ax2 + bxy + cy2 

ẏ = −y + dx2 + exy + fy2 

 

Solution(4):The system is already in the desired form, with 

C = 0, P = −1, F(x, y) = ax2 + bxy + cy2and 

G(x, y) = dx2 + exy + fy2. Let 

h(x) = k2x2 + k3x3 + ⋯ 

Dh(x) = 2k2x + 3k3x2 + ⋯ 

Dh(x)[Cx + F(x, h(x))] = (2k2x + 3k3x2 + ⋯ )(ax2 + bx(k2x2 + k3x3 + ⋯ ) + c(k2x2 + k3x3 + ⋯ )2) 

Ph(x0 + G(x, h(x)) = −(k2x2 + k3x3 + ⋯ ) + dx2 + ex(k2x2 + k3x3 + ⋯ ) + f(k2x2 + k3x3 + ⋯ )2 

↓↓ Collecting terms (Using (5)) 

O(x2) ∶  −k2 + d = 0 

O(x3) ∶ 2k2a = −k3 + ek2 → k3 = (e − 2a)k2 

⋮ 
So h(x) = dx2 + (e − 2a)dx3 + O(x4). The flow on the center manifold is given by (6) 

ẋ = F(x, h(x)) = ax2 + bx(dx2 + (e − 2a)dx3 + O(x4)) + c(dx2 + (e − 2a)dx3 + O(x4))
2
 

= ax2 + bdx3 + (bd(e − 2a) + cd2)x4 + O(x5) 

So unstable fora ≠ 0. For a = 0 and bd > 0 unstable, bd < 0 stable. For a = 0, bd = 0, c ≠ 0 it is unstable. 

 

(5) : From the above theorem to determine the qualitative behavior of the origin for the system 

ẋ = −x3 

ẏ = −y + x2 
 

Solution(5):First, it is clear that the system is stable since the flow on the center manifold is ẋ = −x3. 

Let's calculate the center manifold anyway. The system is already in the desired form, with C = 0, P =
−1, F(x, y) = −x3 and G(x, y) = x2. Let 

h(x) = a2x2 + a3x3 + ⋯ 

Dh(x) = 2a2x + 3a3x2 + ⋯ 

Dh(x)[Cx + F(x, h(x))] = −(2a2x + 3a3x2 + ⋯ )x3 
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Ph(x) + G(x, h(x)) = −(a2x2 + a3x3 + ⋯ ) + x2 

↓↓ Collecting terms (Using (5)) 

O(x2) ∶  −a2 + 1 = 0 

O(x3) ∶  a3 = 0 

O(x4) ∶  −2a2 = −a4 → a4 = 2 

 

In general, a2k+1 = 0 and an+2 = nan for n even. So the Taylor series x2 + 2x4 + 8x6 + ⋯ which diverges 

for x ≠ 0. What happened? Let's try to solve for h(x) without using the power expansion 

dh(x)

dx
(−x3) = −h(x) + x2 

↓↓ 

h′ =
1

x3
h −

1

x
 

 

The existence and uniqueness theorem does not apply (since the vector field is not continuous in x at 0) . 

Indeed using mathematica to solve, it appears to give a continues of solutions (all satisfying h(0) = 0, 

h′(0) = 0), 

 

h(x) = exp (−
1

2x2
) a +

1

2
exp (−

1

2x2
) ExpIntegral Ei (

1

2x2
) 

where a is some constant and 

ExpIntegral Ei(z) = Ei(z) = − ∫
e−t

t
dt.

∞

−z

 

 

Remarks: 

 There may be many functions h(x) that determine different center manifolds. However, the flows on 

 the different center manifolds are determined by 6 and are all topologically equivalent near the 

origin. 

 For an analytical system, if the series expansion of h converges, then there exists a unique analytical 

center manifold. 

 For a analytical system (even polynomial), if the series does not converge, then an analytical center 

manifold need not exist. 

 

Theorem : Let f ∈ C1(E), where E is an open subset of Rn containing the origin. Suppose that f(0) = 0and 

that Df(0) = diag[C, P, Q], where the square matric C has c eigenvalues with zero real part, the square matric 

P has s eigenvalues with negative real part, and the square matric Q has u = n − c − s eigenvalues with 

positive real part. Then there exist C1 functions h1(x), h2(x) satisfying 

Dh1(x)[Cx + F(x, h1(x), h2(x))] = Ph1(x) + G(x, h1(x), h2(x)) 

Dh2(x)[Cx + F(x, h1(x), h2(x))] = Qh2(x) + H(x, h1(x), h2(x)) 

in a neighborhood of the origin such that the nonlinear system (1) which can be written as 

ẋ = Cx + F(x, y, z) 

ẏ = Py + G(x, y, z) 

ż = Qz + H(x, y, z) 

is topologically conjugate to the C1system 

ẋ = Cx + F(x, h1(x), h2(x)) 

ẏ = Py 

ż = Qz 

for (x, y, z) ∈ Rc × Rs × Ru in a neighborhood of the origin. 
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