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Abstract 
In this paper, exponentiated inverse Rayleigh distribution is considered for Bayesian analysis. The 

expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, 

entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors. 
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1. Introduction 
Rao and Mbwambo [1] introduced a generalization of the inverse Rayleigh distribution known as 

exponentiated inverse Rayleigh distribution. They obtained some statistical properties of this distribution. 

The probability density function of exponentiated inverse Rayleigh distribution is given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ 

which is given as 
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2. Bayesian Method of Estimation 

The Bayesian inference procedures have been developed generally under squared error loss function 
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.                (5) The Bayes 

estimator under the above loss function, say, s


 is the posterior mean, i.e, 
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   S E 
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Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss 

function. Norstrom [4] introduced precautionary loss function is given as 
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.                (7) The Bayes 

estimator under this loss function is denoted by P


 and is obtained as  
1
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Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 

     1p
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where  ,







  and whose minimum occurs at . 



 
Also, the loss function  L   has been used in Dey et 

al. [6] and Dey and Liu [7], in the original form having 1p .  Thus  L   can written be as 

    1eL b log ;  b>0.                      (9) 

The Bayes estimator under entropy loss function is denoted by E


 and is obtained by solving the following 

equation 
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Wasan [8] proposed the K-loss function which is given as 
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.              (11) Under K-

loss function the Bayes estimator of θ is denoted by K


 and is obtained as 
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.              (12) 

Al-Bayyati [9] introduced a new loss function which is given as 
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.             (13) Under Al-

Bayyati’s loss function the Bayes estimator of θ is denoted by Al


 and is obtained as 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use the 

quasi density as given by 
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1
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d
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                 (15) where d = 

0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ given by 
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3. Posterior Density under  1g   

The posterior density of θ under  1g  , on using (2), is given by 
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Theorem 1. On using (17), we have 
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Proof.  By definition, 

   c cE f x d       
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From equation (18), for 1c  , we have 
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From equation (18), for 2c  , we have 
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From equation (18), for 1c   , we have 
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From equation (18), for 1c c  , we have 
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4. Bayes Estimators under  1g    

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 

    
2

1
1

1

1 1 i

n
x

S

i

n d log e











         
 .           (23) 

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes 

out to be 
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5. Posterior Density under  2g     

Under  2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 
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Proof.  By definition, 
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From equation (29), for 1c  , we have 
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From equation (29), for 2c  , we have 
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From equation (29), for 1c   , we have 
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From equation (29), for 1c c  , we have 
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6. Bayes Estimators under  2g    
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From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes 

out to be 
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Conclusion 
In this paper, we have obtained a number of estimators of parameter of exponentiated inverse Rayleigh 

distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In 

equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss functions 

using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators under 

different loss functions using gamma prior. In the above equation, it is clear that the Bayes estimators 

depend upon the parameters of the prior distribution. We therefore recommend that the estimator’s choice 

lies according to the value of the prior distribution which in turn depends on the situation at hand. 
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